
1 23

Journal of Computer Virology and
Hacking Techniques

e-ISSN 2263-8733

J Comput Virol Hack Tech
DOI 10.1007/s11416-016-0282-2

Testing android malware detectors against
code obfuscation: a systematization of
knowledge and unified methodology

Mila Dalla Preda & Federico Maggi

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag France. This e-offprint is for personal

use only and shall not be self-archived

in electronic repositories. If you wish to

self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

J Comput Virol Hack Tech
DOI 10.1007/s11416-016-0282-2

ORIGINAL PAPER

Testing android malware detectors against code obfuscation:
a systematization of knowledge and unified methodology

Mila Dalla Preda1 ⋅ Federico Maggi2

Received: 21 March 2016 / Accepted: 29 July 2016
© Springer-Verlag France 2016

Abstract The authors of mobile-malware have started to
leverage program protection techniques to circumvent anti-
viruses, or simply hinder reverse engineering. In response to
the diffusion of anti-virus applications, several researches
have proposed a plethora of analyses and approaches to
highlight their limitations when malware authors employ
program-protection techniques. An important contribution of
this work is a systematization of the state of the art of anti-
virus apps, comparing the existing approaches and providing
a detailed analysis of their pros and cons. As a result of our
systematization, we notice the lack of openness and repro-
ducibility that, in our opinion, are crucial for any analysis
methodology. Following this observation, the second con-
tribution of this work is an open, reproducible, rigorous
methodology to assess the effectiveness of mobile anti-virus
tools against code-transformation attacks. Our unified work-
flow, released in the form of an open-source prototype,
comprises a comprehensive set of obfuscation operators. It
is intended to be used by anti-virus developers and vendors
to test the resilience of their products against a large dataset
of malware samples and obfuscations, and to obtain insights
on how to improve their products with respect to particular
classes of code-transformation attacks.

Keywords Android malware detection ⋅ Code obfuscation

B Federico Maggi
federico.maggi@polimi.it

Mila Dalla Preda
mila.dallapreda@univr.it

1 Universitá degli Studi di Verona, Verona, Italy

2 Politecnico di Milano, Milano, Italy

1 Introduction

Android is the most popular mobile platform with a market
share of 82.8 % [6]. The application-distribution workflow
is such that Android developers can sign their applications
using self-signed certificates and publish them through the
Google Play Store or alternative marketplaces. No central,
trusted certificate authority is required and, as a matter of
fact, no public key infrastructure is implemented. This makes
it relatively easy to develop and distribute Android applica-
tions, including malicious ones. Thus, it is not surprising that,
according to the leading security vendors and researchers,
Android is not only the most popular mobile platform, but
also the most targeted one. Indeed, threats against Android
account for 97 % of the new mobile malware discovered in
the second half of 2013 [14]. This trend was confirmed by the
Symantec’s report where the authors observed that 46 new
families of Android malware were discovered in 2014 [26].
Moreover, in this report, researchers observe that malware
developers are continuously increasing the number of vari-
ants per family, for example, by repackaging well-known
applications with malware.

The proliferation of malicious applications has led to the
development of a plethora of commercial anti-malware (or
anti-virus, or AV) products, distributed as free and paid
applications in the various marketplaces. These detection
tools typically rely on signatures matching for the automatic
identification of malware. A signature is a program feature
extracted from a malicious application that is meant to char-
acterize the malicious nature of the application. Thus, any
application that exhibits a malware signature is classified
as malicious. Given the sandboxed runtime and restrictive
security model of Android, anti-malware have very limited
auditing capabilities. In the best case, without breaking the
security model (i.e., without requiring root privileges), anti-

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-016-0282-2&domain=pdf
http://orcid.org/0000-0003-1073-8036

M. D. Preda, F. Maggi

malware products can scan applications using signatures that
encode syntactic features.

Problem statement. Malware authors have started to lever-
age several techniques, such as code obfuscation, to bypass
detection. Indeed, given the aforementioned limitations of
Android AVs, signatures can be easily evaded. With the
term code obfuscation we refer to program transformations
designed specifically to make static analysis difficult while
preserving the program’s original behavior [11]. Code obfus-
cation changes the code of a program, namely how the
program is written, but not the semantics of a program,
namely what the program computes. Thus, an obfuscating
transformation transforms a program into a semantically
equivalent one that is more difficult to analyze manually or
with automatic tools. Malware writers have widely employed
offensive code-obfuscation techniques in desktop scenarios
and it is not surprising that such techniques are nowa-
days ported to the mobile world. Thus, it is of paramount
importance to have rigorous methodologies to assess the
effectiveness of mobile anti-malware tools against obfusca-
tion. In the past, Christodorescu and Jha [9] in their seminal
paper proposed a methodology to be applied to test the
robustness of generic malware detectors against obfuscation
transformations.

Goals of this work. In this work, we systematize the state of
the art in testing mobile malware detectors and we propose
a unified workflow that anti-malware developers and ven-
dors can use for (1) testing the resilience of their products
against a large dataset of malware samples and obfuscations
and (2) obtain insights on how to improve their products
with respect to particular classes of obfuscations. More pre-
cisely, our approach, called AAMO (Automatic Android
Malware Obfuscator), provides an automatic framework for
the application of existing and potentially novel obfuscating
transformations to large-scale datasets of Android malware.
One goal of our testing methodology is to find the mini-
mal sequence of obfuscation operators, applied according to
a predefined order, that an attacker can create to evade an
anti-malware product. In particular, we fix an order of obfus-
cation operators and we apply them one after the other in
order to identify the shortest sequence of obfuscation opera-
tors that causes a false negative. Although this latter objective
is similar to that of previous work (most notably [20,24]), we
notice a lack of well-established experimental protocols in
this area, which instead is crucial for precise reproducibil-
ity. Although we validate our approach on a representative
dataset (against the top 6 anti-malware products), we believe
that the research community demands something beyond a
comparative analysis or the mere demonstration that code-
obfuscation techniques are effective. Therefore, rather than
just providing a “snapshot” of the current anti-malware sit-
uation, which would be immediately obsolete (e.g., due to

changes in the anti-malware products or dataset, and to the
development of new obfuscation techniques), the focal point
of AAMO is to provide a future-proof methodology and pro-
totype that future researchers will be able to use.

The specifics of the AAMO framework for testing mal-
ware detectors for Android are as follows.

– Comprehensiveness.AAMO considers a large and com-
prehensive pool of obfuscation operators that includes
all the obfuscations proposed in the literature for testing
Android malware detectors.

– Correctness. As noted in [20], the use of certain obfus-
cation operators can make an application non functional.
We consider an obfuscation operation as “successful”
only if it produces a working application, which means
that the evasion technique can be used by a malware
developer.

– Reproducibility and fidelity. Key to any anti-malware
evaluation experiment is its reproducibility. Differently
from previous work, we do not resort to closed source
or commercial products to implement our obfuscation
operators. We implement all the operators used in our
experiments, and release the source code of the prototype.

– Flexibility and scalability. Our lightweight code base
allows new obfuscations to be implemented on top
of AAMO and plugged in the framework. Moreover,
AAMO allows to combine the obfuscations supported
by the framework. AAMO can automatically obfuscate
a large dataset of malware samples.

– Insightfulness. The analysis of the testing results of
AAMOprovides insights on how to improve the signature
used by the AV with respect to the minimal combina-
tion of obfuscation operations that triggers a considerable
amount of false negatives.

Summary of contributions.This paper makes the following
original contributions:

– We provide a systematization of the current state of the art
in obfuscation for mobile applications, which can be used
for benign purposes (e.g., software protection) as well as
for malicious purposes (e.g., anti-malware evasion).

– We describe the design and implementation details of a
new, general-purpose, advanced, mobile-tailored obfus-
cation tool for the Android platform.

– We presents the implementation of a framework for
easily combining obfuscation techniques in order to
obtain arbitrarily complex obfuscation transformations.
The framework is fully automated, modular and it allows
us to apply obfuscation techniques to a large-scale dataset
of malware samples.

– We provide a validation of our framework on top of the
AndroTotal research platform [19]. The main advantage

123

Author's personal copy

Testing android malware detectors against code obfuscation:...

in the use of AndroTotal is that this ensures that the tests
are performed on the unmodified mobile anti-malware
tools and reproduces the same conditions of a malware-
detection task on the end user’s device.

– The proposed framework for testing Andorid anti-malw-
are tools provides insights to counteract the specific
classes of obfuscation in order to implement future-
generation anti-malware products. Indeed, we show that
AAMO can be used to identify the class of obfuscation
that breaks a given detection tool.

In the spirit of open science and for the benefit of the security
of the Android ecosystem, we released a proof of concept
implementation of AAMO as fully open source at https://
github.com/necst/aamo.

Structure of the paper

In Sect. 2 we recall the basic background concepts and defi-
nitions regarding the Android platform. In Sect. 3 we recall
the major researches published in the area of testing Android
malware detectors, together with their limitation and current
needs that motivated our work. Next, in Sect. 4 we provide
an overview of our testing approach and the workflow that
implements it in AAMO. Sect. 5 provides the details of the
obfuscating techniques that we have implemented inAAMO,
grouped into classes according to the code features that they
target. Sect. 6 provides an instance of howAAMO is expected
to work in a real-world use case. We present the obtained
results and discuss them in order to provide suggestions for
improving the considered AV products.

2 Android platform

In this section we summarize the fundamental background
concepts and terminology used in the paper.

2.1 Security and runtime

The Android security model is based on application isola-
tion. More precisely, it leverages the user-based resource
separation mechanism offered by the underlying Linux ker-
nel, in which users (along with their resources, processes,
etc.) are kept isolated from one another. Apps are mapped
one-to-one to users, and each of them runs in an isolated
sandbox. This sandbox is implemented as an instance (i.e.,
process) of the Dalvik VM, a register-based machine with a
high-level instruction set. For optimized performance, Dalvik
executables (also called DEX files) can be just-in-time or
ahead-of-time compiled into the native instruction set. The
latter case have evolved into the current runtime called
Android RunTime (ART), which executes native instruc-

Fig. 1 Android application build process

tions. To allow sandboxed applications to interact with each
other and the system, applications must declare the permis-
sions that they want to use in order to access the resources
(e.g., phone, network connectivity, Bluetooth, contacts).

2.2 Development and deployment

Android is an operating system and development platform
specifically designed for mobile devices such as smart-
phones, tablets, infotainment systems, or similar embedded
devices. Android is build on top of Linux, which pro-
vides an hardware abstraction layer, ensuring portability
to a wide range of architectures. It also provides memory
management, process management, a security model and
networking. On top of Linux, Android provides a set of
low-level libraries and APIs in order that abstracts common
tasks used by userspace applications. Android applications
take advantages of an application framework, which includes
Java-compatible libraries.

Android applications are mainly developed in Java, with
native code extensions through the Java Native Interface.
Applications are distributed as Android package (APK) files,
which are compressed archives that contain the compiled
Dalvik bytecode (see Sect. 2.3), resources (e.g., images,
XML files, and other assets), certificates, and a manifest file.
The manifest file contains a list of the permissions requested
by the application, which must be approved by the user upon
installation.

As in any Java application, each component is encapsu-
lated in a class, which can be referenced from the manifest

123

Author's personal copy

https://github.com/necst/aamo
https://github.com/necst/aamo

M. D. Preda, F. Maggi

file. Referenced components are the entry points, and are
used in order to interact with the Android environment (e.g.,
execute a function at boot, or upon receiving a call or text
message).

In a typical Android context, only digitally signed appli-
cations can be installed. However, the lack of a public key
infrastructure allows developers to use self-signed certifi-
cates to sign their applications and publish them through the
Google Play Store. We consider the idea of submitting obfus-
cated samples to the Google Play Store interesting. However,
since the Google Play Store uses the AVs from VirusTotal,
the state of art work (based on VirusTotal) has already indi-
rectly measured this aspect. There is a whole separate area
dedicated to measuring the resilience of Google Play Store
to the various forms of threats, and we believe our paper
is not in that scope. Applications can be also retrieved from
alternative marketplaces or directly downloaded into devices,
making the problem of applying security checks even more
complex.

The build process is summarized in Fig. 1.

2.3 Bytecode and representation

In this work we rely on an assembler-level representation
of DEX instructions. To this end, we use the Smali lan-
guage, which is compact yet easy to read, and well supported
by program-analysis tools. In Smali, classes and files are
mapped one to one, and each class is contained into a sin-
gle Smali file named as the contained class. The directory
structure reflects the packages hierarchy.

We hereby summarize the essential concepts of the Smali
syntax required to define our obfuscation techniques in
Sect. 5. Primitive types are represented by a single letter (e.g.,
V for void,Z for Boolean, B for byte, S for short). Reference
types are objects and arrays, everything else is a primitive.
Objects take the form Lpackage/name/ObjectName,
where a leading L indicates that it is an object type. Arrays
take the form[Type, whereType could be any type, includ-
ing reference types. For arrays with multiple dimensions,
multiple [character are added. The maximum number of
dimensions is 255.

Methods are associated to the owner object using the
Owner;->MName(TypeType)Type syntax, where para-
meters are simply listed, with no separators.

Fields are likewise always defined using a similar form,
which refers to the owner, the field name and its type:
Owner;->Name:Ljava/lang/String. Directive are
declared with the .Directive token, and lines starting
with # are interpreted as comments.

The Dalvik VM has 32-bit registers that can hold any type
of value, using two adjacent registers for 64-bit types. There
are two ways to specify how many registers are available in
a method. The .registers directive specifies the total

number of registers in the method. The .locals direc-
tive specifies the number of non-parameter registers in the
method. The total number of registers includes the registers
needed to hold the method parameters.

When a method is invoked, its parameters are placed into
the last registers. The first parameter to a non-static method
is always the object that the method is being invoked on
(this), except for static methods. There are two naming
schemes for registers: the normal v naming scheme, and the
p naming scheme for parameter registers. The first register
in the p naming scheme is the first parameter register in the
method. Parameter registers can be equivalently referenced
by either name.

2.4 Anti-malware approaches and limitations

There exist several commercial anti-malware products in
response to the proliferation of malicious applications. In a
traditional desktop environment, AVs applications run with
administrative privileges, whereas on Android they must run
with the same privilege level of a regular application. This
restriction makes it difficult for AV applications to perform
behavioral analysis and runtime scanning.

For this reasons Android applications are analyzed by
using the provided APIs in order to scan the content of
original APK files using static signature matching. Signa-
tures are based on blocks of code, data- or control-flow
graph fragments, identifiers, APIs calls sequences, strings,
manifest, resources, and assets. In some (limited) cases, AV
applications opt for cloud-based scanning. However, this is
often reduced to pre-processing the APK offline and sending
the result (e.g., hash, byte sequences extracted) to the AV
engine’s back end. Indeed, uploading the entire APK is not
always applicable for obvious reasons (e.g., licensing issues,
bandwidth, dynamic code loaded by the application).

2.5 Android application obfuscation

As part of the program-protection arsenal, code obfuscation
is a powerful technique to render manual and automated
reverse-engineering harder. Code obfuscation has been intro-
duced for the first time in [11] as a promising technique to
prevent malicious reverse engineering of programs that aims
at violating the intellectual property of proprietary programs.
Since then, code obfuscation has received the attention of
both software developers for the protection of the intellectual
property of their code (see [10] for a survey), and malware
writers for the evasion of automatic detection tools (e.g.,
[18,21]). Code obfuscation has also been studied from a the-
oretical point of view in order to prove the potentiality and
limitations of this technique (e.g., [8,12,13,16]).

The Android development tool chain includes a sim-
ple, open-source program-obfuscation tool called ProGuard,

123

Author's personal copy

Testing android malware detectors against code obfuscation:...

which removes debug symbols, normalizes identical code
blocks, remove unused code, and “minifies” the identifiers’
names. There exist a plethora of alternative commercial and
open-source tools, which mainly differ from one another for
their scope and obfuscation strength. For example, DexGuard
is a commercial code optimizer and obfuscator derived from
ProGuard. It provides reflection, identifier obfuscation for
packages, classes, methods, and fields, and performs strings,
resources, and asset and library encryption. Allatori, another
commercial obfuscator, provides methods to modify the con-
trol flow graph in addition to string encryption. Similarly,
Klassmaster provides flow obfuscation and string encryption.
Dalvik-obfuscator and APKfuscator are open-source proof-
of-concept obfuscators that leverage the junk- or dead-code
insertion.

Generally, the goal of these (and other) obfuscation
tools is to evade manual reverse engineering. As a con-
sequence, however, code-obfuscation tools can be used to
evade signature-based AVs because they produce a semanti-
cally equivalent program that differs from the original one.
Indeed, according to [27], malware authors have been using
obfuscation for evading AV detection, with both custom and
commercial tools. For example variants of the Opfak.bo and
Obad.a families were obfuscated with a commercial tool, and
samples of the SmsSend.ND!tr family (March 2014) were
obfuscated with the aforementioned APKfuscator. Accord-
ing to Fortiguard Labs [7], 17 to 27 percent of the malicious
samples analyzed used ProGuard or some form of encryption,
even if sometimes encryption is used in legitimate portions.
For instance, samples of the Android/SmsSpy.HW!tr family
(February 2014) had their XML configuration files encrypted
and stored as an asset.

Since the focus of our work is not on code-obfuscation
alone, but on its use for AV evasion and testing purposes, we
refer the reader interested in this subject to [15,23,25].

3 State of the art and motivation

Christodorescu and Jha [9] in their seminal paper proposed a
methodology to be applied to test the robustness of desktop
malware detectors against obfuscating code transformations.
The authors concluded that anti-malware tools have low
resilience against offensive obfuscation. In this section, we
systematize the state of the art in testing the detection rate
of mobile malware in presence of obfuscation. J. Schette and
Kulicke [17] have conducted a detailed investigation in order
to better understand how Android malware can spread. At the
same time, [17] was the first work to highlight the technical
limitations of Android AV apps.

To the best of our knowledge, the main contributions in
the area of Android AV testing are by Zheng et al. [29],
Rastogi et al. [24], and more recently the work of Maiorca et

al. [20]. The common aspect of all these contributions is that
they focus primarily on highlighting the destructive effects
of offensive code obfuscation against existing anti-malware
apps. Rather, we believe that the value of such comparative
studies lies in the methodology, not in the results. Indeed, the
results inherently suffer from quick obsolescence due to the
frequent signature updates and the invention of potentially
novel code-obfuscation techniques. Maiorca et al. [20] strive
to address this issue by repeating the experiments further
times to quantify the changes. Although this has value, the
authors do not tackle the issue of repeatably, which in our
opinion is essential for evaluation methodologies.

In the remainder of this section, we provide a thorough
review and comparison of the state of the art.

ADAM. The approach presented by Zheng et al. [29] is
to generate the obfuscated variants either by directly mod-
ifying the APK files through repackaging transformations,
or by disassembling the APK files, which are then obfus-
cated and re-assembled into bytecode and re-packaged into
a new, obfuscated APK file. The evaluation presented in
Zheng et al. [29] considers 222 malware samples, from
which the authors generated 1,484 variants by applying their
code-transformation techniques. Each variant is obtained by
applying one of the above mentioned transformations. The
final testing phase of ADAM considers two kinds of detec-
tion tools: the top 10 VirusTotal [5] engines and one local
engine (Antiy [1]). The results of their experiments show that
the most effective repacking transformation lower the detec-
tion rate from 93, 78 % to 82, 29 %. While the obfuscating
transformations cause a bigger degradation of the average
detection rate that reaches in the worst case the 50, 95 %.
The authors tested the top 10 detection engines on VirusTo-
tal in October and then in November 2011, then in 2012 they
tested the local engine obtained from Antiy.

The first limitation of this work is that it does not consider
combined code transformations. As a result, it provides an
overview of the effects on the detection rate of each proposed
code-transformation technique alone but not of their combi-
nation. The second limitation is given by the dimension of
the dataset of applications considered in the experiments that
is smaller that the one used in subsequent works. Moreover,
this work makes extensive use of the AV engines through
the popular VirusTotal platform, which is known to the
research community for being inaccurate. Indeed, the Virus-
Total authors themselves recommend not to use their tool to
perform comparative studies. The reason is twofold. First,
VirusTotal uses the command-line versions of the desktop
AV engines, which are not always aligned. Secondly, when
applied to mobile AV engines, VT does not use the AV appli-
cations, but only their signatures. This does not ensure that
the experiment reflects the same detection rate that would be
obtained by using the actual AV apps.

123

Author's personal copy

M. D. Preda, F. Maggi

DroidChameleon provides an implementation of different
obfuscating transformations and classifies them in three main
groups with respect to their degree of complexity: trivial
obfuscations, obfuscations which results can be detected by
tools that use data- and control-flow analysis, and obfusca-
tions which results cannot be detected even when using such
analysis. Rastogi et al. have considered 8 of the most pop-
ular AV applications (as of February 2013) and a dataset of
6 malware samples from well-known families dated back to
2011 (to ensure that the signatures of the non-obfuscated
samples are already present in the AV engines). The authors
observe that combinations of at most two transformations
are sufficient to make the detection fail. However, the lack of
implementation details or source code make this approach
very hard to reproduce on a more significant dataset and
therefore it is difficult to prove the reliability of this interest-
ing results and the scalability of the approach. Interestingly,
the DroidChameleon was the first approach proposing to
leverage the outcome of the tests to obtain details about the
kind of signatures used by the AV engines. This idea, which
is not new as it has been proposed by Christodorescu and Jha
[9] in 2004, was never applied to mobile AVs before.

Recent work. Maiorca et al. [20] evaluated the effectiveness
of existing malware detectors for Android to code obfusca-
tion. The authors considered the labeled Android Malware
Genome Project dataset [30], which contains 1,260 samples,
and a portion of the community-driven Contagio Minidump
dataset [3], comprising 237 samples. In order to obfuscate the
considered samples the proposed approach resorts to Dex-
Guard [4], a commercial, closed-source code-obfuscation
tool widely used for software protection. Out of the box,
DexGuard performs trivial obfuscations such as the renam-
ing of packages, methods, classes, fields and source files, as
well as more complex transformations such as reflection, and
string and class encryption. We note that the authors use a naif
encryption algorithm (a simple XOR), whereas we consider
DES, which is a more realistic choice for encryption-based
obfuscation. However, it does not perform common con-
trol code obfuscations such as junk code insertion, code
reordering and opaque predicates insertion, which we con-
sider in our work. Whenever DexGuard failed to produce
a working executable (which questions the reproducibility
of the experimental protocol), the authors resorted to man-
ually implementing the specific obfuscation strategies that
caused errors. Unfortunately, no details nor source code is
available to document the modifications they performed to
obtain a working, obfuscated application. As a side effect,
our analysis in Table 1 may be imprecise. What is clear is
that Maiorca et al. [20] do not consider control-flow obfus-
cations. The authors then report the average detection rate of
the different detection tools with respect to the obfuscating
transformations used, considering multiple transformations

as suggested by Rastogi et al. [24]. The results of this recent
work prove that attackers might attain a good evasion rate,
with minimum size increment, by employing trivial obfus-
cations and string encryption. However, the reproducibility
of the proposed approach is limited by the lack of imple-
mentation details and the user of commercial, closed-source
tools.

4 Principles and approach overview

Having surveyed the state of the art, our goal is to pro-
pose a comprehensive, unified, generic, practical, and correct
methodology to test the effectiveness of Android AV applica-
tions, in the hope that researchers and AV developers can use
it as a reference. We do not leverage any proprietary or closed-
source tool or service. Last, to the best of our knowledge,
we are the first to publish the details of the implementa-
tion of each obfuscation operator for Android that we have
developed, along with the source code made available to the
research community.

At a high level, our approach takes in input a set of malware
samples, obfuscates it and tests whether each AV application
detects the obfuscated version. This is the general approach
to testing anti-malware products. In addition, our approach
finds the shortest sequence of obfuscation operators (applied
in a predefined order), that an attacker can create to evade
an AV product. Indeed, we apply the implemented obfusca-
tion operators in a predefined order until the detection rate of
a product drops. Each code obfuscation performs only one
transformation and works only on the intermediate represen-
tation in .smali . Details on the implementation of the
obfuscating transformations are provided in Sect. 5.

In the remainder of this section we describe the principles
at the root of our methodology and the testing workflow.

4.1 Comprehensiveness

As summarized in Table 1, we cover the most comprehen-
sive set of obfuscating techniques for Android applications
proposed by far, together with all the feasible combinations,
thus obtaining the largest set of code-obfuscation techniques
in the literature. In addition, we are the first to propose and
implement the insertion of opaque predicates for obfuscating
Android applications.

4.2 Correctness

Our approach ensures the correctness of the obfuscation
operations with respect to the original malware sample. We
consider an obfuscation operation as “successful” only if it
produces a working application, which means that the eva-
sion technique can be used by a malware developer. In other

123

Author's personal copy

Testing android malware detectors against code obfuscation:...

Table 1 Systematization of the state of the art in comparison to this work

Approach Characteristics ADAM DroidChameleon AAMO

Zheng et al. [29] Rastogi et al. [24] Maiorca et al. [20] (this work)

Reproducibility & Fidelity

Use of Proprietary Obfuscators �
Based on Research Tools [19]

Thorough Implementation Details �
Source Code Availability Upon Request [28] [22]

Obfuscated Apps Validated Can compile � �
Comprehensiveness

Dataset Size (# Apps) 222 12 1,497 1,260

Obfuscation Techniques (more details below) 12 8 10 17

Anti-malware Products 11 10 13 6

Combined Transformations � � �
Obfuscation Techniques Implemented

Android Specific (Sect. 5.1)

Repackaging � � � �
Reassembly � � � �
Re-alignment � �
Simple Control-flow Modifications (Sect. 5.2)

Junk Code Insertion � �
Debug Symbols Stripping � �
Defunct Code Insertion � �
Unconditional Jump Insertion � �
Advanced Control-flow Modifications (Sect. 5.3)

Call Indirection � �
Code Reordering � �
Reflection � � �
Opaque Predicate Insertion �
Renaming (Sect. 5.4)

Non-code files and resource renaming � � �
Fields and methods renaming � � � �
Package Renaming � � � �
Encryption (Sect. 5.5)

Resource Encryption (asset files) � �
Native Code Encryption � � �
Data Encryption (strings) � � � �
Class Encryption �

words, we ensure that the semantics of the original applica-
tion is preserved as much as possible and that no syntax errors
are introduced. In the Android context, this also means that
the naming scheme and the directory structure must be valid
after obfuscation, including XML and other resource files.
Some of these aspects are automatically tested by build chain
tools, others are tested by the Android Dalvik VM bytecode
verifier [2] when the application is installed onto the device.
Clearly, these static analyzers do not ensure that the behav-
ior of the application is preserved. To this end, we select a
subset of malware samples (from the dataset described in

Sect. 6) and a set of benign applications for which we have
extensively, manually tested that their core behaviors are not
affected by our transformations.

4.3 Reproducibility and fidelity

Key to any (anti-malware evaluation) experiment is its repro-
ducibility. To this end, we do not rely on any closed source or
proprietary tool, and release the technical details and source
code of our prototype. Moreover, we ensure that our test-
ing results are as close as possible to real conditions, that is,

123

Author's personal copy

M. D. Preda, F. Maggi

a malware author that uses obfuscation to evade a real anti-
malware application installed on a user’s device. To meet this
requirement, we run the unmodified versions of each anti-
malware product that we test. Previous work have leveraged
platforms such as VirusTotal, which consist of a black-box
interface that the analyst can use to test whether a certain
vendor has a signature for detecting a given binary. How-
ever, there is no precise information on the internals of such
tools. In other words, we do not know how they match the sig-
natures and how the target sample is treated. Several mobile
anti-malware applications must leverage specific functional-
ity in order to obtain a correct detection. For instance, some
malware samples are detected upon installation, others are
detected statically by inspecting the file. Therefore, to ensure
fidelity, detection must be performed as if the anti-malware
applications were running on a device. Our implementation
is independent from the device, and thus can run perfectly
on both physical and virtual devices. Technically, we rely
on AndroTotal, a research tool available to the scientific
community to perform AV tests, as further described in
Sect. 6.

4.4 Flexibility and scalability

To be future proof with respect to potentially novel obfus-
cation techniques that may be used by malware authors, we
keep our code base as lightweight as possible, making it easy
to implement new obfuscations on top of AAMO, and plug
them in the framework. Moreover, AAMO allows to com-
bine the operators in any possible order (although we advise
for our proposed order to minimize the amount of obfusca-
tion operators applied). Scalability is essential when dealing
with potentially large datasets of malware samples. To this
end, instead of relying on physical devices, we rely on virtual
devices. Note that emulator evasion is not a problem in this
case, because the analysis techniques applied by the Android
AV engines (as well as the obfuscation operators) are fully
static.

4.5 Insightfulness

In line with previous work, we believe that comparative
results are useful only if insightful. The detection rate alone is
not sufficient for the AV developer to understand what made
the detection engine fail. Therefore, we apply the obfuscation
operators in an order that not only minimizes the chances of
breaking the target application, but that minimizes the length
and simplicity of the chain of operators to apply. This, in
turns, minimizes the runtime and, most importantly, provides
a precise answer to the AV developer, about which specific
obfuscation operator caused the AV to fail. In particular, from
the experiments that we have conducted we are able to iden-
tify the weaknesses of each AV that we have considered in

Fig. 2 High-level workflow overview of AAMO

terms of the class of obfuscations that make the AV fail. This
allows us to provide insights in how to improve the consid-
ered AV tool (see Sect. 6 for details).

4.6 Workflow

Following our design principles, our methodology can be
summarized in the workflow depicted in Fig. 2:

(1) Disassembling: The first phase is to disassemble the
sample file. The output of this phase is an intermediate
representation of the assembler-level code. In practice,
this is implemented viaapktool (or equivalent utility),
which extracts resources, assets, libraries, manifest and
the DEX bytecode. The latter is then converted into its
Smali representation.

(2) Obfuscating: A list of obfuscators is executed sequen-
tially, and the output of each obfuscator is piped into the
next one. Each obfuscator performs only one transforma-
tion and works only on the intermediate representation.
The sample is obfuscated using the next obfuscators class
retrieved from the set defined in Table 1, following this
order:

123

Author's personal copy

Testing android malware detectors against code obfuscation:...

1. Android specific obfuscations (Sect. 5.1)
2. Simple control-flow obfuscations (Sect. 5.2)
3. Advanced control flow obfuscations (Sect. 5.3)
4. Renaming obfuscations (Sect. 5.4)
5. Resource renaming obfuscations (Sect. 5.4.1)
6. Resource encryption obfuscations (Sect. 5.5.1)

(3) Correctness Tests and Reassembling: The resulting
obfuscated sample in its intermediate form is built
back into a valid Android application package using
apktool (in “build” mode), which is then signed as
normally.

(4) Testing:The obfuscated APK file obtained from the pre-
vious phases is scanned with the set of AVs. This phase is
part of the workflow, but is implemented outside AAMO
for simplicity and flexibility. In our prototype implemen-
tation, as detailed in Sect. 6, we rely on the AndroTotal
research platform.

The next section focuses on the set of obfuscating transfor-
mations that we designed and implemented, which form the
core of AAMO.

5 Obfuscation operators implementation

In this section we provide details on the obfuscating tech-
niques that we implemented. For ease of presentation, we
distinguish between five classes of obfuscators, as summa-
rized in Table 1 (in comparison with the systematized state
of the art).

5.1 Android specific

This class of obfuscators focuses on simple, Android-specific
code transformations that can be used to modify a file without
altering its semantics. In other words, the resulting file will
have a different hash while retaining the same exact func-
tionality of the original file.

5.1.1 Repackaging

Since Android applications are packaged as compressed
archive files, and since AVs rely on their digest as a first,
nave signature, a simple obfuscation operator consists in
un-compressing the APK files, adding junk resources (e.g.,
“empty” or unused files), and re-compressing the resulting
content in a new archive. This procedure creates a function-
ally identical APK with a different hash.

Malware authors take repackaging techniques one step
further, by embedding their malicious payload into vari-
ous benign host applications. This has the effect of creating

unique malware samples and, at the same time, luring the
victim with benign-looking “container” applications.

5.1.2 Reassembly

Similarly to repackaging, disassembling and assembling the
DEX code (i.e., classes.dex) contained in an APK
archive has the result of creating a functionally equivalent
application yet with a different digest. This is due to the arti-
facts left by the disassembling process itself, which does not
produce the best optimized assembly code, or by the repre-
sentation language used (Smali, in our case).

5.1.3 Re-aligning

Aligning an APK file means optimizing its structure so that
the resulting archive can be mapped in memory efficiently
(since Android uses memory-mapped files to access and load
APK resources). More precisely, the convention is to align
APK files to 4-byte boundaries.

As a side effect, aligning an archive produces a slightly
different file, yet with the same functionality as the original
one.

5.2 Simple control-flow modifications

This class of obfuscators modify the control flow by adding
new code. The goal is to evade signatures that are based on
simple fingerprints such as code size, digest, symbols table
content.

5.2.1 Junk code insertion

This classic obfuscation operator inserts no-operation inst-
ructions (also known as “NOP”), opcode 0x00 in Dalvik,
which does nothing for one machine clock cycle. The goal is
to alter basic code signatures such as size or digest, as well
as n-gram-based ones.

Our implementation inserts a random amount of NOPs
to each method (excluding, for example, abstract methods,
which contain no instructions by definition).

5.2.2 Debug symbols stripping

Debug symbols are sometimes found in production releases,
mostly by left enabled by mistake. Debugging statements
such as .line, .source or .parameter are used to
ease debugging and help the developer by obtaining more
verbose stack traces. This obfuscation operator removes any
debug directives found in the Smali representation of the
DEX bytecode.

123

Author's personal copy

M. D. Preda, F. Maggi

5.2.3 Defunct code insertion

As part of the detection signatures, some products rely on
the names of the methods and classes declared in the DEX
file. The goal of this obfuscation operator is to evade such
signatures by altering method and class names.

To this end, we randomly generate method or class names.
Once we find a non-existing one, we insert it right after the
#direct methods annotation. We generate the inserted
code so as not to alter any part of the existing symbols and
code.

.method public static FogLow(Ljava/lang/String;
L java/lang/String;)V

.registers 2

.prologue
invoke-static {p0, p1},

Landroid/util/Log;->d(Ljava/lang/String;Ljava/lang/
String;)I

return-void
.end method

Listing 1 Defunct method example.

.class public final L<ClassName>;

.super Ljava/lang/Object;

.source "<ClassName>.java"

direct methods
.method public static FogLow(Ljava/lang/String;L ⤦

� java/lang/String;)V
.registers 2
.prologue
invoke-static {p0, p1}, ⤦

� Landroid/util/Log;->d(Ljava/lang/String; ⤦
� Ljava/lang/String;)I

return-void
.end method

.method public static <MethodName >()V v0, "<String1>"
.locals 2
const-string
const-string
.prologue
invoke-static {v0, v1}, L<ClassName>;->FogLow(v1, ⤦

� "<String2>" ⤦
� Ljava/lang/String;Ljava/lang/String;)V

return-void
.end method

Listing 2 Defunct class example.

5.2.4 Unconditional jump insertion

To further alter the control-flow structure, we insert forward
and backward unconditional jumps, so as not to alter the
code semantics. In the JVM or Dalvik VM, unconditional
jumps are implemented with a go-to instruction (which has
no higher-level equivalent in Java). We rely on the goto/32
instruction, which gives the widest address range. More
precisely, we add a first goto/32 instruction at the very
beginning of the body of each, right after the .prologue
annotation. This first instruction jumps at the end of the
method’s body, after the return instruction. Right after this
location we insert another goto/32 that jumps back at the
beginning of the method’s body, such that to skip the first
jump. The methods affected by this operator are randomly
selected.

.method public ⤦
� FogLow(Ljava/lang/String;Ljava/lang/String;)V

...preamble...

.prologue
goto/32 :GoToFogEnd
:GoToFogBeg

...body...

return-void
:GoToFogEnd
goto/32 :GoToFogBeg

.end method

Listing 3 Unconditional jump insertion example.

5.3 Advanced control-flow modifications

This class of obfuscators alters the control flow significantly
by adding new branches or modifying existing ones, and by
leveraging reflection. Note that we are the first to port opaque
predicates to the DEX architecture.

5.3.1 Call indirection

This obfuscator aims to evade signatures based on the appli-
cation’s call graph. In practice, we redirect each method
call to proxy methods that call the original method. These
proxies share the same prototype of the original method,
including parameters order and type, return type, invocation
type, and registers. Return values, if any, are returned by the
proxy methods. Each proxy method is a public static method,
added right after the #direct methods annotation, with
a unique randomized identifier. To increase randomness,
we detour multiple calls to the same method to distinct
proxies. We apply this obfuscator to framework-library and
intra-application calls (excluding constructors and static ini-
tializers).

.class public final L<ClassName>;
.super Ljava/lang/Object;
.source "<ClassName>.java"

direct methods
.method public static ⤦

� <Identifier>(Ljava/lang/String;L ⤦
� java/lang/String;)I

.registers 3

.prologue

invoke-static {p0, p1}, ⤦
� Landroid/util/Log;->d(Ljava/lang/String; ⤦
� Ljava/lang/String;)I

move-result v0
return v0

.end method

.method public static FogLow(Ljava/lang/String;L ⤦
� java/lang/String;)V

.registers 2

.prologue

invoke-static {p0, p1}, L<ClassName>;-><Identifier>
(Ljava/lang/String; Ljava/lang/String;)I

return-void
.end method

Listing 4 Call indirection.

123

Author's personal copy

Testing android malware detectors against code obfuscation:...

5.3.2 Code reordering

This obfuscator changes the static order of some instructions
without changing the runtime execution flow of the orig-
inal program. The goal is to evade signatures based on the
order of instructions or DEX opcodes (e.g., n-grams). In each
method body, we group instructions into uniquely labeled
basic blocks. We then shuffle the resulting basic blocks and
insert unconditional jumps between them to preserve the
original execution sequence.

5.3.3 Reflection

We enhance the power of the code-reordering operator
by implementing reflection-based obfuscation (which we
also apply alone). Essentially, reflection means executing
code which location in memory is determined at run-
time (e.g., C function pointers, Java reflect API, Android
dynamic code loading API). This obfuscation operator
replaces static method calls to reflection calls, by load-
ing the target method’s name into a string on which the
java.lang.reflect.Method.invoked() is then
called.

.class public final L<ClassName>;
.super Ljava/lang/Object;
.source "<ClassName >.java"

direct methods
const v0, 0x2
new-array v1, v0, [Ljava/lang/Class;
new-array v2, v0, [Ljava/lang/Object;

const v0, 0x0
const-class v3, Ljava/lang/String;
aput-object v3, v1, v0
aput-object p0, v2, v0
const v0, 0x1
const-class v3, Ljava/lang/String;
aput-object v3, v1, v0
aput-object p1, v2, v0

const-string v0, "FogLow"
const-class v3, L<ClassName>;

invoke-virtual {v3, v0, v1}, ⤦
� Ljava/lang/Class;->getMethod(Ljava/lang/String;⤦
� [Ljava/lang/Class;)L java/lang/reflect/Method;

move-result-object v0

invoke-virtual {v0, v3, v2}, ⤦
� Ljava/lang/reflect/Method;->invoke(⤦
� Ljava/lang/Object; [Ljava/lang/Object;)

move-result-object v0

return-void

.end method

.method public static FogLow(Ljava/lang/String; ⤦
� Ljava/lang/String;)V

.registers 2

.prologue

invoke-static {p0, p1}, ⤦
� Landroid/util/Log;->d(Ljava/lang/String; ⤦
� Ljava/lang/String;)I

return-void
.end method

.method public static <MethodName>()V
.locals 2
const-string v0, "<String1>"
const-string v1, "<String2>"

.prologue
invoke-static {v0, v1}, L<ClassName>;-><RndMethodName>

(Ljava/lang/String; Ljava/lang/String;)V

return-void
.end method

Listing 5 Reflection example.

5.3.4 Opaque predicate insertion

Opaque predicates are conditional expressions whose con-
stant value is known by the obfuscator while it is difficult for
a compiler or static analyzer to deduce. Opaque predicates
insertion aims at confusing static analysis tools that, not being
aware of the constant value of the inserted opaque predicate,
erroneously see both branches as possible (even if one is
never executed at run time). For example, the developer could
insert a condition on a function’s return value. In practice, we
implement this operator by setting two constant integer val-
ues in the first two local registries v0 and v1 of the method.
We set these values randomly (above zero). Then, we append
simple arithmetic instructions (e.g., add-int, rem-int)
on these values, such that the outcome is always greater than
zero. Using the if-gtz instruction (if greater than zero)
we instruct the machine to execute a chain of unconditional
jumps (implemented with the goto/32 instruction), end-
ing up to the function return instruction. The “else” branch is
never executed. We apply this obfuscation only to methods
with two or more local parameters.

5.4 Renaming

This class of obfuscators aims at evading signatures based on
the presence of specific strings. This applies to non-code files
(e.g., resources, assets) and code files (e.g., fields, classes, or
methods names).

5.4.1 Non-code files and resource renaming

Although we place this sub-class of obfuscators under
the “renaming” umbrella, we discovered that it is effec-
tive enough even if employed alone. Therefore, in our
experiments we treat it separately from the other renaming
obfuscators.

This obfuscators parses the resource names from the XML
files extracted from the APK, and replaces user-defined
resource identifiers with the first eight characters of the MD5
of the identifier string, while updating references accordingly
(including filename-based identifiers, for which it renames
the respective files). In order to evade signatures based on
the entire resource table, this obfusction operator adds a ran-
dom number of useless resource IDs (generated by following
the platform constraints).

If the developer of the targeted APK relies on the unique
integer ID through a subclass of the R class to access
resources—as suggested by the Android developers guide—

123

Author's personal copy

M. D. Preda, F. Maggi

no further change is required. However, if resources are
referenced, inside the executable code, by their identifier,
inconsistency issues arises. In these cases, we inject also a
call to the Android framework method that is used to obtain
a resource unique integer ID from its identifier.

5.4.2 Identifier renaming

This obfuscator replaces each field, method or class name
(called “identifier” from hereon) with the first eight charac-
ters of the MD5 of the identifier string itself. We rename the
references accordingly, by changing the arguments passed to
the(i|s)get-*,(i|s)put-*, andinvoke-* instruc-
tions. In order to evade signatures based on the symbol table,
we add to each class a random number of useless copies of the
last field, with randomized unique identifiers. We use UTF-8
encoding in order to cope with Unicode identifiers, and pre
pend an alphabetical character so as to generate a valid iden-
tifier. We propagate the renaming to the XML resource files
and Android manifest, which may refer to class names.

5.4.3 Package renaming

In the Java language, package names are a mechanism for
organizing classes into name spaces. Developers typically
use package names to organize classes belonging to the
same category or providing similar functionality. Classes in
the same package can access each other package-restricted
members.

Packages are usually defined using a dot-separated hier-
archy. In the smali representation, each class is referenced
by pre pending the complete path of its package, with
the forward slash instead of the dot. For example the
java.lang.String class is referenced as
Ljava/lang/String in Smali, reflecting the directory
structure.

Each Android application declares, within its manifest
file, the application’s package name. This global package
name serves as a unique identifier for the application (and as
the default name for the application process). Certain appli-
cations marketplaces enforce that apps should have distinct
package names. Given the central role of package names in
identifying Android applications, many AVs use the package
name string in their signatures.

This operator obfuscates changes the package structure of
the application, including the Android package name defini-
tion, by renaming package identifiers, as well as the metadata
(i.e., labels of application, activities, services, providers,
receivers, intent filters, permissions, and actions) declared
in the manifest file. In other words, this obfuscator performs
a complete refactoring of the application code’s name spaces.
More precisely, it replaces the package name identifier with
the first eight characters of the MD5 digest of the original

identifier, taking care of propagating the change to any refer-
ring code.

5.5 Encryption

AV signatures are heavily based on sequences of bytes.
Therefore, encrypting files or code in an application changes
its bytes entirely. Encryption can thus potentially evade all
the aforementioned signatures.

All the obfuscation operators described in this section fol-
low a simple schema: They encrypt the target object with a
symmetric yet non trivial encryption algorithm (in our case,
DES), and then overrides the Android framework methods
required to access the encrypted target object. The overrid-
den methods begin with a proper decryption routine that is
invoked every time an object is accessed by the application.

The decryption occurs always at runtime and so this obfus-
cation evades detection signatures that relies on resources
content in order to build their signatures.

5.5.1 Resource encryption (asset files)

File and path names are renamed to the MD5 of their
string values and the raw objects are encrypted. Since the
AssetManager class cannot be overridden, we locate each
call to the AssetManager.open framework method and
redirect them to a proper proxy method that we inject, which
takes care of the decryption.

5.5.2 Native code encryption

Similarly to the previous obfuscator, we rename native code
files and encrypt them. Also in this case we inject a proper
proxy method to which we forward the calls originally
directed to System.load (this way, we also intercept calls
originating from its wrapper loadLibrary).

5.5.3 Data encryption (strings)

This obfuscator provides string resource value encryption.
The value of each string resource, plural string resource and
string array resource, is replaced with its DES encrypted
value.

6 Experimental validation

In this section we describe how we have validated our uni-
fied methodology on a real-world use case, that is for testing
the resilience of some of the major existing anti-malware
products for Android against the comprehensive obfuscation
operators that we implemented. In the remainder of this sec-

123

Author's personal copy

Testing android malware detectors against code obfuscation:...

Table 2 AV applications used for our experimental evaluation

Vendor Package Name Version Downloads

Avast com.avast.android.mobilesecurity 2.0.3917 100k

Norton com.symantec.mobilesecurity 3.3.4.970 50k

Dr. Web com.drweb 7.00.3 50k

Kaspersky com.kms.free 10.4.41 10k

Trend
Micro

com.trendmicro.tmmspersonal 3.1 5k

Zoner com.zoner.android.antivirus 1.8.0 5k

tion we describe and justify our choice of dataset, present the
obtained results, and provide a thorough discussion.

6.1 Dataset

Despite the availability of sample data sources such as Virus-
Total, AndroTotal and Contagio Minidump, the Android
Malware Genome Project [30] is the only curated dataset
produced by the academic community. This dataset contains
1,260 well-organized malware samples that, comprising 49
malware families, cover the majority of existing Android
malware families with heterogeneous characteristics and
malicious behaviors. The dataset was collected between
August 2010 and October 2011. Therefore, we are positive
that AV vendors had enough time to update their signatures.
All samples are proved to be malware by both automated and
manual analysis.

Since our focus is not of comparing a large number of
AV engines, but rather to show how methodology can be
applied in practice, we selected the top 6 free AV applications
available on the Google Play Store, as summarized in Table 2.
We updated the malware signatures before the execution of
our tests, on the same day, 01/27/2014.

6.2 Test automation

To ensure reproducibility and fidelity of the results, (main
characteristics of our methodology), we leverage AndroTo-
tal, a research platform to automate Android anti-malware
scans, in which tests are performed by simulating a real user’s
behavior when using an anti-malware app. AndroTotal [19]
supports various AV applications and multiple Android plat-
form versions. By providing an APK as input, AndroTotal
produces the labels of the detected malware variant (if any),
and the scanning time. Using AndroTotal allowed us to focus
our efforts on the overall methodology, while being confident
that scanning results are obtained with a rigorous and robust
scientific method, already vetted by the research community.

We have performed our experiments on a specific target
version of the Android Jelly Bean v4.1.x API level 16, which
is among the top five most used versions.

0

100

200

T
im

e
of

sc
an

ni
ng

(s
)

Detected
Undetected

Original Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

Fig. 3 Average detection time by the outcome of the scan

6.3 Resource requirements and speed

For the obfuscation phase we used modest resources (a 4-
cores machine with 8GB of memory). Our AAMO prototype
took about 2 seconds to run the Android specific and the sim-
ple control-flow obfuscators, about 50 seconds when adding
the advanced control-flow operators, and approximately 100
seconds with resource renaming and encryption activated.
To run the full chain of obfuscators, AAMO never took more
than 200 seconds.

We allocated slightly more resources to AndroTotal (an
8-cores machine with 16GB of memory). On average, the
time required for scanning an obfuscated sample was 100 to
300 seconds, and increasing with the number of obufscations
applied. This is because a non-matched signature is more
likely than a matched signature if the sample is obfuscated,
as summarized in Fig. 3.

6.4 Discussion of results

In the following we present our experimental results. To
show how our methodology is insightful, we discuss how the
obfuscation operator that caused the failure of an AV is an
indicator of the weaknesses of the signatures behind the AV.
For instance, this information could be used by the vendors
as regression tests.

Table 3 shows the detection rate profile of the anti-malware
tools that we tested, along the obfuscation chain. In partic-
ular, the table reports for each anti-malware tool its average
detection rate with respect to the different class of obfus-
cation considered in the testing methodology. This value is
computed as the average of the corresponding detection rates
of the anti-malware for each malware family in the data-set.
If the average detection rate is 0.00 %, we denote it with “✗.”
For example, the average detection rate of the Dr. Web AV is
96.74 % when applied to non-obfuscated malware, 85.78 %
when Android specific obfuscations are applied, 81.25 %
when the samples are further obfuscated with basic con-
trol flow obfuscations, and drops to 33.53 % when advanced
control flow obfuscations are applied. Table 4, in the appen-
dix, describes in more details the results of our experiments

123

Author's personal copy

M. D. Preda, F. Maggi

Table 3 Detection rate of obfuscated malware samples after applying the list of obfuscators described in Sect. 5. Note that we differentiate between
resource renaming and (generic) renaming

Cumulative Obfuscation Transformation

Vendor Original +Android Specific +Simple CF +Advanced CF +Renaming +Resource Ren. +Encryption

Avast 98.17 % 98.17 % 98.17 % 96.51 % 60.29 % 10.25 % ✗

Norton 98.01 % 97.62 % 97.62 % 97.54 % 20.04 % ✗ ✗

Dr. Web 96.74 % 85.78 % 81.25 % 33.52 % 32.49 % 33.12 % ✗

Kaspersky 97.70 % 97.22 % 96.82 % 92.77 % 45.51 % 33.60 % ✗

Trend Micro 96.98 % 73.95 % 71.64 % 49.96 % 49.72 % 49.72 % ✗

Zoner 98.01 % 20.02 % 20.02 % 20.02 % 20.02 % ✗ ✗

Overall 97.60 % 78.79 % 77.59 % 65.05 % 39.34 % 21.11 % ✗

by showing the profile of the average detection rate of the
each anti-malware on the malware families considered in
the dataset. When applicable, we re-run the experiment by
enabling only the obfuscator that has caused the drop, and
add the preceding ones, one at a time, until a comparable drop
occurs again. In this way we ensure that the shortest and most
effective sequence of operators is found. Observe that dur-
ing our experiments we distinguish between renaming and
resource renaming. This is because we have observed that
these obfuscating transformations may influence in different
ways the detection rate of an anti-malware tool (e.g., Avast is
able to handle renaming but not resource renaming). More-
over, none of the considered anti-malware tools is able to
detect a malware sample that employs resource encryption.

The last line of Table 3 summarizes our results as the aver-
age detection rate. In the following we discuss the detection
profile of each detection tool, to provide an example of how
the AAMO methodology can be applied in practice.

6.4.1 Avast

0

500

1,000

1,500 1,236
98.17%

1,236
98.17%

1,236
98.17%

1,215
96.51%

759
60.29%

129
10.25% 0

0.00%N
um

be
r
of

de
te
ct
ed

sa
m
pl
es

Original Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

Android specific transformations and control flow obfus-
cations have no effect on the detection rate of Avast, that
after applying these obfuscation is still of 96.51 %. We argue
that the signature used by this AV uses static analysis tech-
niques in order to handle modifications of the control flow
graph. Renaming causes a significant drop in the detection
rate that reaches the 60.29 %. From this fact, under a black-
box assumption, we can conclude that Avast employs some

sort of name-based matching that, in our experiments, suc-
ceeds in detecting only 60.29 % of the samples. On the one
hand, since the detection rate drops to 10.25 % when resource
renaming is applied, we conclude that Avast heavily relies on
asset names. On the other hand, further experiments showed
that when code renaming and encryption are applied together
(without resource renaming), Avast reaches 36.22 % detec-
tion, showing that code name-based features are also given
importance.

6.4.2 Norton

0

500

1,000

1,500 1,234
98.01%

1,229
97.62%

1,229
97.62%

1,228
97.54%

353
28.04%

0
0.00%

0
0.00%N

um
be

r
of

de
te
ct
ed

sa
m
pl
es

Original Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

Android specific transformation and control flow obfus-
cations (both basic and advanced) have little effect on the
detection rate of Norton, that after applying these obfusca-
tion is still of 97.54 %. Thus, we argue that the signatures are
based on static analysis techniques that make it resilient to
modifications of the control flow graph. Renaming obfusca-
tions have an important impact on the detection rate that drops
to 20.04 %. In our experiments we also observed that the
69.50 % of malware samples we have tested can evade detec-
tion by applying only code identifiers renaming and string
encryption. Moreover, by manually dissecting these samples
we have confirmed that the detection is based on code iden-
tifiers. The use of symbolic names (e.g., variable names) as
a detection criterion, as opposed to the actual names, would
reduce these false negatives.

The contribution of renaming is generally substantial, but
resource renaming obfuscation alone is not sufficient. For
example, we applied only resource renaming and found out,

123

Author's personal copy

Testing android malware detectors against code obfuscation:...

by manual inspection, that 28.04 % of the samples were still
detected because of their package name.

6.4.3 Dr. Web

0

500

1,000

1,500 1,218
96.74% 1,080

85.78%
1,023
81.25%

422
33.52%

409
32.49%

417
33.12%

0
0.00%N

um
be

r
of

de
te
ct
ed

sa
m
pl
es

Original Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

The application of Android specific transformations has
a significant impact (from 96.74 % to 85.78 %). Indeed,
10.96 % of samples in our dataset can evade detection by
applying Android specific transformations. This suggests
that Dr. Web relies on syntactic features. Basic control flow
obfuscations have little effect (-4.53 %), while advanced con-
trol flow obfuscations cause a 47.73 % detection rate drop.
So we argue that Dr. Web relies on some static analysis of
the bytecode, which makes it resilient to basic control-flow
obfuscation. However, more sophisticated analysis tech-
niques should be employed by this product in order to identify
opaque predicates and similar artifacts introduced by our
advanced obfuscator.

6.4.4 Kaspersky

0

500

1,000

1,500 1,230
97.70%

1,224
97.22%

1,219
96.82%

1,168
92.77%

573
45.51% 423

33.60%

0
0.00%N

um
be

r
of

de
te
ct
ed

sa
m
pl
es

Original Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

Android specific transformation and control flow obfus-
cations (both basic and advanced) have little effect on
the detection rate, which is still 92.77 % after obfuscation.
Instead, renaming obfuscations cause a significant drop in the
detection rate (from 92.77 % to 45.51 %). Then, when apply-
ing resource renaming, we reach 33.60 %, which becomes
zero when encryption is used. By analyzing the contribution
of each specific obfuscator, we found out that 47.26 % of the
samples can evade detection by applying only code-identifier
renaming and string encryption.

6.4.5 Trend micro

0

500

1,000

1,500 1,221
96.98%

931
73.95%

902
71.64%

629
49.96%

626
49.72%

626
49.72%

0
0.00%N

um
be

r
of

de
te
ct
ed

sa
m
pl
es

Original Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

Android specific transformations have significant impact
(from 96.98 % to 73.95 %). Basic control flow obfuscations
have little effect (−2.31 %), where advanced control flow
obfuscations cause a 21.68 % detection rate drop. Thus, we
can assert that Trend Micro employs some sort of signatures
based on static analysis of the bytecode that makes it resilient
to some of the changes of the control flow graph. However,
given the success of our advanced control-flow obfuscators,
more sophisticated analysis techniques should be employed
by this product in order to identify opaque predicates and
similar artifacts. Renaming has no effect at all. This could be
explained by the fact that the detection engine may leverage
signatures on the content of assets and resource files.

6.4.6 Zoner

0

500

1,000

1,500 1,234
98.01%

252
20.02%

252
20.02%

252
20.02%

252
20.02%

0
0.00%

0
0.00%N

um
be

r
of

de
te
ct
ed

sa
m
pl
es

Original Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

We observe that the average detection rate of Zoner drops
from 98.01 % to 20.02 % when applying Android specific
transformations. This suggests that Zoner heavily relies on
syntactic features. Indeed, by manual analysis we have dis-
covered that the 77.99 % drop is due to naive detection based
on a digest of the APK file or on its cryptographic signature.
It is clear that this makes Zoner very sensitive to any triv-
ial transformation (e.g., repacking, reassembly, re-aligning).
Basic and advanced control flow obfuscations seem to have
to effect at all, whereas the detection rate breaks down to zero
when the renaming of resources is applied.

7 Conclusions

In the seminal paper by Christodorescu and Jha [9], the
authors tested the resilience of desktop anti-malware tools

123

Author's personal copy

M. D. Preda, F. Maggi

against obfuscation. Their experiments showed that desk-
top malware detectors were not able to recognize obfuscated
malware variants. In a similar vein the results obtained by
Zheng et al. [29], Rastogi et al. [24] and Rastogi et al. [20],
focus on showing that mobile malware detectors are not able
to recognize obfuscated Android malware variants.

Our viewpoint is that, nowadays, these results are not sur-
prising. They are clearly valuable to raise awareness among
the vendors of anti-malware products. However, with this
work we underline the importance of reproducibility in this
research line. Reproducibility is essential to all research
areas, and in particular to applied malware analysis.

Our response to the problem is toward ensuring repro-
ducible AV testing. Rather than focusing our work on the
results, we propose and release the implementation of a uni-
fied methodology (that takes into account the outcome of our
systematization work) so that researchers and vendors can
repeat the experiments autonomously, and keep on improv-
ing their prototypes and products. The main goal of this work
was to propose and develop a reproducible and flexible

framework for the analysis of Android AVs against obfus-
cation. As such, our focus was on the methodology, rather
than on the single obfuscators, on which there is ample litera-
ture. Clearly, the class of obfuscating transformations offered
by our current implementation of AAMO can be extended.
For example, by implementing more sophisticated obfusca-
tions that perform code and more advanced opaque predicates
insertion. We have also validate our methodology in practice,
to show that it can be used to produce results along the line of
previous work, but we make a step further, following an open
approach, and providing details and source code of our proto-
type. Observe that our validation has been done with respect
to a specific order of the classes of obfuscations implemented
in AAMO. Researches can decide to preform the validation
of the AV product of interest considering also different order-
ings of the obfuscations and see how this affects detection.

8 Appendix

Table 4 Detection rates of obfuscated malware samples

Family Product Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

ADRD
(2011-02) Avast � ✓ � � ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web 81.82 % 86.36 % ✗ ✗ ✗ ✗

Kaspersky � � 95.45 % 95.45 % ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner 4.55 % 4.55 % 4.55 % 4.55 % ✗ ✗

AnserverBot
(2011-09) Avast � � 99.47 % 98.93 % ✗ ✗

Norton � � � 88.24 % ✗ ✗

Dr. Web 90.37 % 88.77 % 96.26 % 94.65 % 97.33 % ✗

Kaspersky � 99.47 % � 98.93 % 99.47 % ✗

Trend Micro 99.47 % 99.47 % 99.47 % 99.47 % 99.47 % ✗

Zoner 1.60 % 1.60 % 1.60 % 1.60 % ✗ ✗

Asroot
(2011-09) Avast � � � � � ✗

Norton � � � ✗ ✗ ✗

Dr. Web 62.50 % � � � � ✗

Kaspersky 87.50 % � � � � ✗

Trend Micro � � � � � ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

BaseBridge
(2011-06) Avast 99.18 % 99.18 % 99.18 % 97.54 % 49.18 % ✗

Norton 99.18 % 99.18 % 99.18 % 36.89 % ✗ ✗

Dr. Web 82.79 % 7.05 % 87.70 % 85.25 % 90.98 % ✗

Kaspersky 99.18 % 99.18 % 98.36 % 96.72 % 95.08 % ✗

Trend Micro 95.08 % 95.08 % 95.08 % 95.08 % 95.08 % ✗

Zoner 4.10 % 4.10 % 4.10 % 4.10 % ✗ ✗

123

Author's personal copy

Testing android malware detectors against code obfuscation:...

Table 4 continued

Family Product Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

BeanBot
(2011-10) Avast 87.50 % 87.50 % 87.50 % ✗ ✗ ✗

Norton 87.50 % 87.50 % 87.50 % 87.50 % ✗ ✗

Dr. Web 62.50 % 62.50 % ✗ ✗ ✗ ✗

Kaspersky 5.00 % 87.50 % 5.00 % ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

BgServ
(2011-03) Avast � � � � ✗ ✗

Norton � � � � ✗ ✗

Dr. Web 7.78 % 88.89 % ✗ ✗ ✗ ✗

Kaspersky � � � ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner 88.89 % 88.89 % 88.89 % 88.89 % ✗ ✗

CoinPirate
(2011-08) Avast � � � ✗ ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � ✗ ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

CruseWin
(2011-07) Avast � � � � ✗ ✗

Norton � � � � ✗ ✗

Dr. Web 50.00 % � ✗ ✗ ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

DogWars
(2011-08) Avast � � � � ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

DroidCoupon
(2011-09) Avast � � � � � ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � � � � ✗

Kaspersky � � � � � ✗

Trend Micro � � � � � ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

DroidDeluxe
(2011-09) Avast � � � � � ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � ✗ � � ✗

Kaspersky � � � � � ✗

Trend Micro � � � � � ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

123

Author's personal copy

M. D. Preda, F. Maggi

Table 4 continued

Family Product Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

DroidDream
(2011-03) Avast 87.50 % 87.50 % 87.50 % 81.25 % 81.25 % ✗

Norton 87.50 % 87.50 % 87.50 % 81.25 % ✗ ✗

Dr. Web 81.25 % 81.25 % 81.25 % 5.00 % 5.00 % ✗

Kaspersky 87.50 % 87.50 % 87.50 % 87.50 % 81.25 % ✗

Trend Micro 81.25 % 81.25 % 81.25 % 81.25 % 81.25 % ✗

Zoner 6.25 % 6.25 % 6.25 % 6.25 % ✗ ✗

DroidDreamLight
(2011-05) Avast 97.83 % 97.83 % 95.65 % 32.61 % ✗ ✗

Norton 97.83 % 97.83 % 97.83 % ✗ ✗ ✗

Dr. Web 93.48 % 89.13 % ✗ ✗ ✗ ✗

Kaspersky 97.83 % 97.83 % 91.30 % 28.26 % ✗ ✗

Trend Micro 97.83 % 86.96 % 2.17 % ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

DroidKungFu1
(2011-06) Avast � � 97.06 % 97.06 % ✗ ✗

Norton 97.06 % 97.06 % 97.06 % 2.94 % ✗ ✗

Dr. Web 3.53 % 82.35 % 97.06 % � 94.12 % ✗

Kaspersky � 94.12 % 97.06 % � � ✗

Trend Micro � � � � � ✗

Zoner 44.12 % 44.12 % 44.12 % 44.12 % ✗ ✗

DroidKungFu2
(2011-07) Avast � � � � � ✗

Norton � � � 43.33 % ✗ ✗

Dr. Web 90.00 % 86.67 % � � 96.67 % ✗

Kaspersky � � � � � ✗

Trend Micro � � � � � ✗

Zoner 33.33 % 33.33 % 33.33 % 33.33 % ✗ ✗

DroidKungFu3
(2011-08) Avast 99.35 % 99.35 % 99.03 % 4.85 % ✗ ✗

Norton 99.35 % 99.35 % 99.03 % ✗ ✗ ✗

Dr. Web 89.64 % 83.17 % 1.94 % 1.94 % 1.94 % ✗

Kaspersky 98.38 % 97.41 % 87.38 % ✗ ✗ ✗

Trend Micro 65.05 % 62.14 % 36.57 % 35.92 % 35.92 % ✗

Zoner 32.36 % 32.36 % 32.36 % 32.36 % ✗ ✗

DroidKungFu4
(2011-10) Avast 93.75 % 93.75 % 93.75 % 91.67 % ✗ ✗

Norton 93.75 % 93.75 % 93.75 % ✗ ✗ ✗

Dr. Web 82.29 % 67.71 % 4.17 % 4.17 % 4.17 % ✗

Kaspersky 93.75 % 92.71 % 88.54 % ✗ ✗ ✗

Trend Micro 93.75 % 93.75 % 93.75 % 93.75 % 93.75 % ✗

Zoner 18.75 % 18.75 % 18.75 % 18.75 % ✗ ✗

DroidKungFuSapp
(2011-10) Avast � � � ✗ ✗ ✗

Norton 66.67 % 66.67 % 66.67 % ✗ ✗ ✗

Dr. Web ✗ ✗ ✗ ✗ ✗ ✗

Kaspersky 66.67 % 66.67 % 66.67 % ✗ ✗ ✗

Trend Micro � � � � � ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

123

Author's personal copy

Testing android malware detectors against code obfuscation:...

Table 4 continued

Family Product Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

DroidKungFuUpdate
(2011-10) Avast � � � � ✗ ✗

Norton ✗ ✗ ✗ ✗ ✗ ✗

Dr. Web ✗ ✗ ✗ ✗ ✗ ✗

Kaspersky ✗ ✗ ✗ ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

Endofday
(2011-05) Avast � � � � ✗ ✗

Norton � � � � ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � � ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

FakeNetflix
(2011-10) Avast � � � ✗ ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � � ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

FakePlayer
(2010-08) Avast � � � � ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � 83.33 % � ✗ ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

GamblerSMS
(2011-07) Avast � � � � ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

Geinimi
(2010-12) Avast 91.18 % 91.18 % 91.18 % 66.18 % 1.47 % ✗

Norton 91.18 % 91.18 % 91.18 % 47.06 % ✗ ✗

Dr. Web 83.82 % 6.47 % 1.47 % 1.47 % 1.47 % ✗

Kaspersky 88.24 % 91.18 % 85.29 % 57.35 % 1.47 % ✗

Trend Micro 83.82 % 3.53 % 1.47 % 1.47 % 1.47 % ✗

Zoner 66.18 % 66.18 % 66.18 % 66.18 % ✗ ✗

GGTracker
(2011-06) Avast � � � � ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � � � ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

123

Author's personal copy

M. D. Preda, F. Maggi

Table 4 continued

Family Product Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

GingerMaster
(2011-08) Avast � � � � � ✗

Norton � � � � ✗ ✗

Dr. Web 50.00 % � � � � ✗

Kaspersky � � � � � ✗

Trend Micro � � � � � ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

GoldDream
(2011-07) Avast 95.74 % 95.74 % 59.57 % 59.57 % ✗ ✗

Norton 95.74 % 95.74 % 95.74 % ✗ ✗ ✗

Dr. Web 6.60 % 6.60 % ✗ ✗ ✗ ✗

Kaspersky 95.74 % 93.62 % 89.36 % 59.57 % ✗ ✗

Trend Micro 80.85 % 61.70 % ✗ ✗ ✗ ✗

Zoner 29.79 % 29.79 % 29.79 % 29.79 % ✗ ✗

Gone60
(2011-09) Avast � � � � ✗ ✗

Norton � � � � ✗ ✗

Dr. Web 66.67 % 7.78 % ✗ ✗ ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

GPSSMSSpy
(2010-08) Avast � � � � ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

HippoSMS
(2011-07) Avast � � � � ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

Jifake
(2011-10) Avast � � � � ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web ✗ ✗ ✗ ✗ ✗ ✗

Kaspersky � � ✗ � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

jSMSHider
(2011-06) Avast � � � ✗ ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � 93.75 % � 87.50 % 93.75 % ✗

Kaspersky � � � � � ✗

Trend Micro � � � � � ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

123

Author's personal copy

Testing android malware detectors against code obfuscation:...

Table 4 continued

Family Product Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

KMin
(2011-10) Avast � � � � ✗ ✗

Norton � � � 88.46 % ✗ ✗

Dr. Web 84.62 % 69.23 % 1.92 % 1.92 % 1.92 % ✗

Kaspersky � � � 1.92 % 1.92 % ✗

Trend Micro � � 1.92 % 1.92 % 1.92 % ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

LoveTrap
(2011-07) Avast � � � � ✗ ✗

Norton � � � � ✗ ✗

Dr. Web � ✗ ✗ ✗ ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

NickyBot
(2011-08) Avast � � � � ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

NickySpy
(2011-07) Avast � � � � ✗ ✗

Norton � � � � ✗ ✗

Dr. Web � 50.00 % ✗ ✗ ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

Pjapps
(2011-02) Avast 96.55 % 96.55 % 96.55 % ✗ ✗ ✗

Norton 96.55 % 96.55 % 96.55 % ✗ ✗ ✗

Dr. Web 9.31 % 82.76 % ✗ ✗ ✗ ✗

Kaspersky 91.38 % 89.66 % 89.66 % ✗ 1.72 % ✗

Trend Micro 43.10 % 44.83 % ✗ ✗ ✗ ✗

Zoner 25.86 % 25.86 % 25.86 % 25.86 % ✗ ✗

Plankton
(2011-06) Avast � � � � ✗ ✗

Norton 2.73 % 2.73 % 2.73 % ✗ ✗ ✗

Dr. Web � 2.73 % ✗ ✗ ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner � � � � ✗ ✗

RogueLemon
(2011-10) Avast � � � 50.00 % ✗ ✗

Norton 50.00 % 50.00 % 50.00 % ✗ ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � � ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

123

Author's personal copy

M. D. Preda, F. Maggi

Table 4 continued

Family Product Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

RogueSPPush
(2011-08) Avast � � � � ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web 7.78 % 55.56 % ✗ ✗ ✗ ✗

Kaspersky � � 88.89 % ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner 66.67 % 66.67 % 66.67 % 66.67 % ✗ ✗

SMSReplicator
(2010-11) Avast � � � � ✗ ✗

Norton � � � � ✗ ✗

Dr. Web ✗ � ✗ ✗ ✗ ✗

Kaspersky � � � � ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

SndApps
(2011-07) Avast � � � ✗ ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � � ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

Spitmo
(2011-09) Avast � � � ✗ ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � ✗ ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

TapSnake
(2010-08) Avast � � � � ✗ ✗

Norton � � � 50.00 % ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � � 50.00 % ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

Walkinwat
(2011-03) Avast � � � ✗ ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web ✗ � ✗ ✗ ✗ ✗

Kaspersky � � � ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

YZHC
(2011-06) Avast � � � 45.45 % ✗ ✗

Norton � � � 4.55 % ✗ ✗

Dr. Web 90.91 % 81.82 % ✗ ✗ ✗ ✗

Kaspersky � � 95.45 % 4.55 % ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

123

Author's personal copy

Testing android malware detectors against code obfuscation:...

Table 4 continued

Family Product Android Sp. Simple CF Adv. CF Renaming Resource Ren. Encrypt.

zHash
(2011-03) Avast � � � � � ✗

Norton � � � ✗ ✗ ✗

Dr. Web 81.82 % 81.82 % � � 90.91 % ✗

Kaspersky � � � � � ✗

Trend Micro � � � � � ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

Zitmo
(2011-07) Avast � � � � ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � � ✗ ✗ ✗ ✗

Kaspersky � � ✗ ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

Zsone
(2011-05) Avast � � � 66.67 % ✗ ✗

Norton � � � ✗ ✗ ✗

Dr. Web � 83.33 % ✗ ✗ ✗ ✗

Kaspersky � � � ✗ ✗ ✗

Trend Micro ✗ ✗ ✗ ✗ ✗ ✗

Zoner ✗ ✗ ✗ ✗ ✗ ✗

References

1. Antiy. http://www.antiy.net. Accessed 15 July 2016
2. Dalvik bytecode verifier notes. http://www.netmite.com/android/

mydroid/dalvik/docs/verifier.html. Accessed 15 July 2016
3. Contagio mobile e mobile malware mini dump. http://

contagiominidump.blogspot.com/. Accessed 15 July 2016
4. Dexguard. http://www.saikoa.com/dexguard. Accessed 15 July

2016
5. Virustotal. https://www.virustotal.com. Accessed 15 July 2016
6. Smartphone os market share, q2 2015, 2015. http://www.idc.com/

prodserv/smartphone-os-market-share.jsp. Accessed 15 July 2016
7. Apvrille, A., Nigam, R.: Obfuscation in android malware, and how

to fight back. In: Virus, Bulletin, pp. 1–10 (2014)
8. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A.,

Vadhan, S.P., and Yang, K.: On the (im)possibility of obfuscating
programs. In: CRYPTO ’01: Proceedings of the 21st Annual Inter-
national Cryptology Conference on Advances in Cryptology, pp.
1–18. Springer, Berlin (2001) (ISBN 3-540-42456-3)

9. Christodorescu, M., Jha, S.: Testing malware detectors. In: Pro-
ceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’04), pp. 34–44 (2004)

10. Collberg, C., and Nagra, J.: Surreptitious Software: Obfusca-
tion, Watermarking, and Tamperproofing for Software Protec-
tion. Addison-Wesley Professional, Menlo Park (2009) (ISBN
0321549252)

11. Collberg, C., Thomborson, C.D., Low, D.: Manufacturing cheap,
resilient, and stealthy opaque constructs. In: Proceedings of Confer-
ence Record of the 25st ACM Symp. on Principles of Programming
Languages (POPL ’98), pp. 184–196. ACM Press, New york (1998)

12. Preda, Mila Dalla, Giacobazzi, Roberto: Semantics-based code
obfuscation by abstract interpretation. J. Comput. Secur. 17(6),
855–908 (2009)

13. Preda, M.D., Mastroeni, I., Giacobazzi, R.: A formal framework
for property-driven obfuscation strategies. In: Fundamentals of
computation theory—19th International Symposium, FCT 2013,
Liverpool, UK, August 19-21, 2013. Proceedings, vol. 8070 of
Lecture Notes in Computer Science, pp. 133–144. Springer, Berlin
(2013)

14. F-Secure. H2 2013 threat report. Technical report (2014)
15. Freiling, F.C., Protsenko, M., Zhuang, Y.: An empirical eval-

uation of software obfuscation techniques applied to android
apks. In: International Conference on Security and Privacy in
Communication Networks—10th International ICST Conference,
SecureComm 2014, Beijing, China, 24–26 Sept 2014, Revised
Selected Papers, Part II, vol. 153 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunica-
tions Engineering, pp. 315–328. Springer, Berlin (2014)

16. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryp-
tion for all circuits. In: 54th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2013, 26–29 Oct 2013, Berkeley,
CA, USA, pp. 40–49. IEEE Computer Society (2013)

17. Fedler, R., Schette, J., Kulicke, M.: On the effectiveness of mal-
ware protection on android: an evaluation of android antivirus app.
Technical report (2013)

18. Sridhara, S.M., Stamp, M.: Metamorphic worm that carries its own
morphing engine. J. Comput. Virol. 9(2), 49–58 (2013)

19. Maggi, F., Valdi, A., Zanero, S.: AndroTotal: a flexible, scalable
toolbox and service for testing mobile malware detectors. In: Pro-
ceedings of the Third ACM Workshop on Security and Privacy
in Smartphones & Mobile Devices, SPSM ’13, pp. 49–54. ACM.
ISBN 978-1-4503-2491-5. doi:10.1145/2516760.2516768. http://
doi.acm.org/10.1145/2516760.2516768. Accessed 15 July 2016

20. Maiorca, Davide, Ariu, Davide, Corona, Igino, Aresu, Marco,
Giacinto, Giorgio: Stealth attacks: an extended insight into the

123

Author's personal copy

http://www.antiy.net
http://www.netmite.com/android/mydroid/dalvik/docs/verifier.html
http://www.netmite.com/android/mydroid/dalvik/docs/verifier.html
http://contagiominidump.blogspot.com/
http://contagiominidump.blogspot.com/
http://www.saikoa.com/dexguard
https://www.virustotal.com
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://dx.doi.org/10.1145/2516760.2516768
http://doi.acm.org/10.1145/2516760.2516768
http://doi.acm.org/10.1145/2516760.2516768

M. D. Preda, F. Maggi

obfuscation effects on android malware. Comput. & Secur. 51, 16–
31 (2015)

21. Musale, Mangesh, Austin, Thomas H., Stamp, Mark: Hunting for
metamorphic javascript malware. J. Comput. Virol. Hacking Tech.
11(2), 89–102 (2015). doi:10.1007/s11416-014-0225-8

22. Pellegatta, F., Maggi, F., Preda, M.D.: Aamo: another android
malware obfuscator (source code). https://github.com/necst/aamo.
Accessed 15 July 2016

23. Protsenko, M., Müller, T.: PANDORA applies non-deterministic
obfuscation randomly to android. In: 8th International Conference
on Malicious and Unwanted Software: “The Americas”’, MAL-
WARE 2013, Fajardo, PR, USA, Oct 22–24, 2013, pp. 59–67. IEEE
Computer Society (2013)

24. Rastogi, V., Chen, Y., Jiang, X.: Droidchameleon: evaluating
android anti-malware against transformation attacks. In: 8th ACM
Symposium on Information, Computer and Communications Secu-
rity, ASIA CCS ’13, Hangzhou, China, ACM, May 08-10, 2013,
pp. 329–334 (2013)

25. Strazzere, T., Sawyer, J.: Android hacker protection level 0. Defcon
22, Las Vegas (2014)

26. Symantec Corporation. Internet security threat report: 20 April
2015

27. Unuchek, R., Chebyshev, V.: Mobile malware evolution:
2013. https://securelist.com/analysis/kaspersky-security-bulletin/
58335/mobile-malware-evolution-2013/. Feb 2014

28. Zheng, M., Lee, P.P.C., Lui, J.C.S.: Adam: an automatic and exten-
sible platform to stress test android anti-virus systems (source
code). http://ansrlab.cse.cuhk.edu.hk/software/adam/. Accessed
15 July 2016

29. Zheng, M., Lee, P.P.C., Lui, J.C.S.: ADAM: an automatic and exten-
sible platform to stress test android anti-virus systems. In: Detection
of Intrusions and Malware, and Vulnerability Assessment—9th
International Conference, DIMVA 2012, Heraklion, Crete, Greece,
July 26–27, 2012, Revised Selected Papers, volume 7591 of Lecture
Notes in Computer Science, pp. 82–101. Springer, Berlin (2012)

30. Zhou, Y., Jiang, X.: Dissecting android malware: characteriza-
tion and evolution. In: Proceedings of the 33rd IEEE Sympo-
sium on Security and Privacy. http://www.malgenomeproject.org/.
Accessed 15 July 2016

123

Author's personal copy

http://dx.doi.org/10.1007/s11416-014-0225-8
https://github.com/necst/aamo
https://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013/
https://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013/
http://ansrlab.cse.cuhk.edu.hk/software/adam/
http://www.malgenomeproject.org/

	Testing android malware detectors against code obfuscation: a systematization of knowledge and unified methodology
	Abstract
	1 Introduction
	Structure of the paper

	2 Android platform
	2.1 Security and runtime
	2.2 Development and deployment
	2.3 Bytecode and representation
	2.4 Anti-malware approaches and limitations
	2.5 Android application obfuscation

	3 State of the art and motivation
	4 Principles and approach overview
	4.1 Comprehensiveness
	4.2 Correctness
	4.3 Reproducibility and fidelity
	4.4 Flexibility and scalability
	4.5 Insightfulness
	4.6 Workflow

	5 Obfuscation operators implementation
	5.1 Android specific
	5.1.1 Repackaging
	5.1.2 Reassembly
	5.1.3 Re-aligning

	5.2 Simple control-flow modifications
	5.2.1 Junk code insertion
	5.2.2 Debug symbols stripping
	5.2.3 Defunct code insertion
	5.2.4 Unconditional jump insertion

	5.3 Advanced control-flow modifications
	5.3.1 Call indirection
	5.3.2 Code reordering
	5.3.3 Reflection
	5.3.4 Opaque predicate insertion

	5.4 Renaming
	5.4.1 Non-code files and resource renaming
	5.4.2 Identifier renaming
	5.4.3 Package renaming

	5.5 Encryption
	5.5.1 Resource encryption (asset files)
	5.5.2 Native code encryption
	5.5.3 Data encryption (strings)

	6 Experimental validation
	6.1 Dataset
	6.2 Test automation
	6.3 Resource requirements and speed
	6.4 Discussion of results
	6.4.1 Avast
	6.4.2 Norton
	6.4.3 Dr. Web
	6.4.4 Kaspersky
	6.4.5 Trend micro
	6.4.6 Zoner

	7 Conclusions
	8 Appendix
	References

