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Abstract Mobile devices have become the main interac-
tion mean between users and the surrounding environment.
An indirect measure of this trend is the increasing amount
of security threats against mobile devices, which in turn
created a demand for protection tools. Protection tools,
unfortunately, add an additional burden for the smartphone’s
battery power, which is a precious resource. This observa-
tion motivates the need for smarter (security) applications,
designed and capable of running within adaptive energy
goals. Although this problem affects other areas, in the
security area this research direction is referred to as “green
security”. In general, a fundamental need to the researches
toward creating energy-aware applications, consist in hav-
ing appropriate power models that capture the full dynamic
of devices and users. This is not an easy task because of the
highly dynamic environment and usage habits. In practice,
this goal requires easy mechanisms to measure the power
consumption and approaches to create accurate models. The
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existing approaches that tackle this problem are either not
accurate or not applicable in practice due to their limiting
requirements. We propose MPower, a power-sensing plat-
form and adaptive power modeling platform for Android
mobile devices. The MPower approach creates an adequate
and precise knowledge base of the power “behavior” of sev-
eral different devices and users, which allows us to create
better device-centric power models that considers the main
hardware components and how they contributed to the over-
all power consumption. In this paper we consolidate our
perspective work on MPower by providing the implemen-
tation details and evaluation on 278 users and about 22.5
million power-related data. Also, we explain how MPower
is useful in those scenarios where low-power, unobtrusive,
accurate power modeling is necessary (e.g., green security
applications).

Keywords Adaptive power modeling · Security
applications · Smart power management · Data collection ·
Mobile devices

1 Introduction

Mobile devices, in particular smartphones and tablets, have
become the device of choice for many users, and the mar-
ket is growing at unprecedented rates. As an indicator,
the mobile network traffic as a percentage of the global
Internet traffic has an estimated growing rate of 1.5×
per year.1 Given the popularity of smartphones [21], an
increasing amount of security threats have begun target-
ing such devices. As modern smartphones are often used

1http://www.kpcb.com/insights/2013-internet-trends
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to store user-centric sensitive information (e.g., contacts,
credentials) or, worse, to perform financial transactions,
they have become an appealing target for cybercriminals.
Indeed, between 2010 and 2012, about [25] 50 families
of malicious applications have been found to target the
Android system. In 2012–2013, this phenomenon exploded
and, as of June 2013, several thousands of variants of known
and new families of Android malware are found every day.
On the one hand, this created a demand for protection tools,
to which security vendors responded with about 80 anti-
malware applications for Android, free or paid, distributed
through the Google Play Store. On the other hand, installing
and running another application translates into an increased
burden for the smartphone’s battery power, which is a pre-
cious resource as we noticed in [19]. Indeed, checking the
storage for the presence of malicious applications or, for
instance, screening incoming text messages for malicious
links is costly in terms of both power and speed.

The above considerations naturally motivate the need for
smarter security solutions, capable of running and perform-
ing effectively under an energy-aware perspective [5]. This
research direction, often referred to as “green security”,
aims at embedding modern smartphone’s power constraints,
models and usage patterns during the design of security
solutions (e.g., anti-malware applications). For instance, it
would be desirable to have a tool capable of easily profiling
a device, used by a certain user, with and without a security
solution installed, so as to evaluate the modification on the
device dynamic caused by such a security solution. Another
related research direction that received some attention con-
sists in capturing the power model of a threat (e.g., running
malicious application) to create so-called “power signa-
tures” [16], which can be leveraged to detect the presence
of such threat. Similarly, other researchers have proposed
to detect threats under the assumption that they introduce
a measurable deviation from the user’s typical power usage
pattern. However, such assumption have been recently been
showed to be quite hard to ensure [11], at least for a limited
number of devices. Indeed, the highly-dynamic conditions
under which a smartphone is used today (e.g., changing
habits, new applications installed, removed, or updated)
make it very difficult to create robust power models and,
more importantly, to detect variations accurately.

Given these premises, we conclude that a fundamental
need common to both the aforementioned research direc-
tions, as well as other research fields, consists in having
appropriate power models. These models must capture the
full dynamic of both the device and the user, which is
not an easy task because of the dynamic environment and
changing conditions of modern smartphones. In practice,
this requires mechanisms to measure the power consump-
tion. These mechanisms are also challenging to design and
develop, because of their conflicting requirements. First,

they must not introduce a significant power load themselves.
Second, they should gather precise measurements. Third,
they must run on the mobile device itself—without substan-
tial modifications. For example, hardware-based approaches
(e.g., employing a sophisticated sensor attached to the
device in a laboratory) are not desirable because they con-
strain the device to a fixed location, changing completely
its usage model (although they guarantee high-precision
measurement).

As discussed in Section 2.2, the existing approaches that
tackle these problems are either not accurate (e.g., too user
centric) or not applicable in practice due to their limiting
requirements (e.g., hardware based). We first highlighted
the need for better approaches in [3], where we presented the
concept of MPower, an adaptive power-modeling system—
and Android application—capable of non-obtrusive power
measurements and modeling. Approaches (and apps) that
does both measurement and modeling on the device intro-
duce an excessive power load, mainly due to the power
model computation. As we discussed in [8], on the one hand
an accurate power model requires expensive computation,
on the other hand, the short battery life makes this unfeasible
in practice.

In this paper, we consolidate the aforementioned per-
spective work by providing the implementation details and
evaluation of MPower. Also, we explain how MPower is
useful in those scenarios where low-power, unobtrusive,
accurate power modeling is necessary (e.g., green security
applications). The design of MPower is not obtrusive in two
ways: first, it does not require any software or hardware
modifications on the device; second, it offloads expensive
computation to remote servers, keeping only a lightweight
power-sensing process on the smartphone. Differently from
previous work, MPower does not change the way the device
is used (i.e., does not require obtrusive hardware modifica-
tions): this ensures a decent user base, which in turns means
that a good variety of devices are considered by the power
model. Because of its peculiar characteristics and flexibil-
ity, MPower has a very broad application domain, including
the aforementioned (green) security research direction.

MPower is both a power-sensing Android application—
distributed through the Google Play Store and described
in Section 3—and power-modeling approach (described
in Section 4). Once installed, the MPower app starts
with a data-collection phase on the device (described in
Section 3.1), which logs time series of network utilization,
battery charge level, etc. This data is sent to a remote server
where a pre-built power model is tuned according to the
user-specific behavior. This procedure creates an adequate
and precise knowledge base of the power “behavior” of sev-
eral different devices and users, which allows MPower to
create better device-centric power model, which considers
the main hardware components and how they contributed to
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the overall power consumption. In turn, this approach pro-
vides the users with tailored power models, toward better
power-management strategies. As detailed in Section 4, we
rely on machine-learning techniques to generate the power
models.

2 Background and state of the art

Although mobile devices have evolved from simple devices
to complex systems, they still belong to a constrained and
fluctuating environment: constrained because resources are
limited, both in terms of performance and power; fluctuat-
ing because both the external environment and the resources
availability can greatly vary over time. The battery energy
is an example of a resource that influences the whole sys-
tem functioning and thus must be modeled carefully. This
modeling must take the constrained and fluctuating environ-
ment into account: In other words, the power model should
be adaptive.

The remainder of this section contextualizes the prob-
lem of power modeling on mobile devices with a focus
on the Android platform (Section 2.1). We describe what
data can be measured from the environment and what data
about power consumption can be collected through the
Android APIs. Last, in Section 2.2, we overview the rele-
vant work in the area and discuss the respective strengths
and weaknesses, which motivate our research.

2.1 Android as a sensing platform

Modern smartphones are equipped with several sensors,
which can be used to sense both internal (e.g., battery level,
CPU load) and external (e.g., movement, location) device
conditions. The Android SDK includes a set of APIs that
ensure easy access to the available sensors and observe the
device context. For the purpose of this work we need access
to the battery, location and network APIs, which we briefly
overview in the reminder of this section.

Information about the battery status is often coarse
grained, because most devices do not include a physical
measure about electrical current, or more precise hardware
sensors. The only information exposed by the system to
the developers are the battery percentage, voltage, temper-
ature and an indicator of the battery health status. Also,
Android offers a great variety of sensors that can be used
to sense the external environment [15]. The device geoloca-
tion [2] is ensured by the Location framework, which reads
data from different sources. The GPS is the most accurate
source, it works well outdoors and is highly battery hungry.
If an accurate position is not mandatory, the location can
also be determined using cell tower or Wi-Fi information,
which consume less battery power. Wireless technologies

such as Bluetooth and NFC are also supported by Android.
These can be used, for instance, to discover nearby devices
in the surrounding environment. Some other APIs are pro-
vided to scan for other devices, query for paired devices and
exchange data between paired devices.

The SensorManager class manages the access to
the hardware sensors available on the device, which may
include accelerometers, magnetometers, pressure and tem-
perature sensors. Each sensor data is identified through a
type, a sampling rate and an accuracy. The touch screen
itself is recognized as a sensor. As a best practice, devel-
opers are invited to use sensors with care, because most
of them require a non-negligible amount of power. The
sampling frequency is particularly important in this regard:
Choosing the “right” sampling period requires empirical
work, to ensure that an application is able to gather enough
data for its purposes, without influencing the behavior of the
system.

MPower targets the Android platform because of its pop-
ularity and open design, which makes it a great research
tool. Indeed, the large amount of data that can be directly
retrieved from or inferred by an Android device makes its a
good choice for many applications such as MPower.

Android does not provide development tools to analyze
how much an application, a component or the whole system
is consuming. Since version 2.3, Android provides statis-
tics to the end user regarding the battery usage of each
application and component. In practice, a screen lists all the
applications and services that have consumed at least the
2 % of the battery life since last battery recharge. Also, a
graph shows the battery discharging over time along with
some metadata for each listed application. Unfortunately,
this data cannot be accessed programmatically, as no API is
exposed. In this regard, MPower can be seen as an effort to
mitigate this limitation by showing that such statistics can
be computed from raw data in the application scope.

2.2 Related work

Power-energy models differ in the method to generate the
model, measurement methodology, granularity, adaptability
to changes (e.g., user-device behavior), and target devices.
In this regard, several methodologies to create power models
that combine together all the aforementioned properties can
be found in the literature. The generation of a system-level
power-consumption model can be performed at runtime or
offline: One the one hand, a runtime-generated model is
able to adapt to new (software) updates or even new devices,
without the need to (re)generate the whole model from
scratch; on the other hand, an adaptive model generation
usually relies only on software APIs to gather information
from the actual battery state, information that cannot be
as precise as it would be using an external measurement
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system. Another important difference among the proposed
approaches is related to the granularity of the generated
model: Some works try to develop a model able to com-
pute the entire system power consumption at a given time.
Clearly, offline models have symmetric properties (i.e., pre-
cise measurement yet static model estimation). Other works
are related to model a single application power consump-
tion. Finally, some works take into account also the user
experience and how different device usage patterns can
influence the overall power consumption. However, con-
sidering this user-centric approach is problematic. Indeed,
the works proposed in the literature all assume static usage
patterns. In this, our approach is different, because it consid-
ers device-centric assumption yet with an adaptable model,
constructed from real-world data, as explained in Section 4.
This allows to build a robust baseline model of each device.
In our vision, explained in Section 5, our approach can be
extended by building user-centric models on top of such
baselines. This is different than constructing either a device-
or user-centric model.

Device-centric models Let us focus on the methodologies
that use offline measurement in order to create a system-
level power model [1]. [22] presents a methodology to
isolate power consumption of the main hardware elements.
In this work, a resistor is inserted in series between the bat-
tery and its connector on the phone, and a sampling board
is used to measure the battery voltage. In [4], Carrol et al.
present another work that relies on physical measurement.
The goal of this work is to understand where and how energy
is used, to provide a basis for managing energy consumption
by physically measuring the power consumption of relevant,
along with the overall power drain. They discovered that
the majority of power consumption can be attributed to the
GSM module, display, and graphics subsystem.

Another way to measure power on a device is to exploit
interfaces already available on specific devices or OS, e.g.
the Advanced Configuration and Power Interface (ACPI)
(as proposed into this work). In [6] and [23] a self-modeling
approach is presented, to build high-rate mobile system
models without the need of external measurement systems.
These works select data, as variables, that reflect the activ-
ity levels of each hardware component such as the hardware
performance counters (HPCs) for processors, the downlink
and uplink data rates for the wireless interfaces, and the
brightness level for the display. These variables are used to
perform a linear regression to generate the models.

In [24], Zhang et al. present a methodology that uses
built-in battery voltage sensors and knowledge of battery
discharge behavior to monitor power consumption while
explicitly controlling the power management and activ-
ity states of individual components. They developed an

Android application PowerBooter for online power esti-
mation. One of the most interesting thing they discovered
is that for components with significant power consump-
tion, the states of other components become irrelevant: this
means that if I want to know the consumption of two compo-
nents it is simply possible to make a test on the first and on
the second separately and sum the result. The power model
in this work includes six components: CPU and LCD as
well as GPS, Wi-Fi, audio, and cellular interfaces. The result
indicates that the power model built with PowerBooter is
accurate to within 4.1 % of measured values for 10-second
intervals. The main problems about this work are, that it is
necessary to have the specific discharge curve of the bat-
tery of that specific device to have a mobile phone with
superuser access. For the first problem using the same look-
up table for all batteries may be inaccurate. For the second
problem the software cannot be used on every mobile device
available on the market.

User-centric models Other works show how the power
model of a mobile device is highly influenced by the user
behavior, as widely discussed in [7]. In fact, in [9] the user
perception and intention are considered a key factor for the
creation of a device-specific power model. Also in [4], it
is clearly shown how different kind of usage have different
impact on the power consumption. The problem is the col-
lection of subjective data; in fact, the power consumption
and the user perception of the logging operation must be
taken into account because it could results in a very power
hungry task. Thus one of the main challenge is to collect
as much information as possible, while keeping the direct
interaction at minimum. Various technique have been used
in literature to maximize the information provided by the
users while keeping at minimum the interaction with them:
a good example is the user feedback mechanism developed
by Google on the Google Maps Navigation [20].

3 Power sensing component

Building accurate power models requires adequate amounts
of data gathered from a diverse population of real users and
devices. Such a logging system must be extensible (to sup-
port future version of the Android operating system) and
efficient, with little impact on the battery life. Moreover, as
the collected data is sent to a remote server, the commu-
nication also must be efficient. To this end, we used our
MPower Android application as a power sensing tool, fol-
lowing a crowdsourcing-like approach.2 We presented the
vision and the design of MPower in [3, 19] and released
the app on the Google Play Store in April, 2012. The

2https://play.google.com/store/apps/details?id=org.morphone.mpower

https://play.google.com/store/apps/details?id=org.morphone.mpower
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MPower user interface is shown in Fig. 1. We designed
the application to be unobtrusive in terms of both opera-
tions required by the end user (i.e., no setup is required) and
power needs (i.e., less than the 2 % of the overall battery
power).

Although the main purpose of the application is to collect
data for research purposes, as described in Section 3.1, we
purposely introduced other important features that makes
the application appealing and useful for the user. This is
another important aspect for ensuring enough participants
to crowdsourcing studies. An example of such useful fea-
tures is the “smart suggestion” function exemplified in
Fig. 1b, which provide tips to help users to save battery
life. A trivial approach to this consists in turning off hard-
ware subsystems (e.g., wifi, bluetooth or GPS) that have
been unintentionally left on, despite unused. Typical scenar-
ios include, for instance, a user commuting between home
and work: Although both places probably offer Wi-Fi con-
nectivity, keeping the antenna enabled while commuting
turns out to be a waste of battery power. Similar mecha-
nisms are described in details in the main work that present
MPower [3].

As of June 2013, we have 278 active users and about 22.5
million records in our database. As summarized in Fig. 2,
MPower collected data from a good variety of devices and
operating system versions.

The reminder of this section describes what data MPower
collects, how the logging works, and how we store data on
on our servers.

3.1 Data collection and management

One of the most important aspects to consider when build-
ing a statistical power model (on mobile devices) is the
data-gathering phase. On the one hand, the device bat-
tery life is influenced by several device components (e.g.,
number of running processes, battery charge level, volt-
age). On the other hand, collecting data from every such
component is not a good practice: The more data is col-
lected, the heavier the collection phase becomes in terms
of battery consumption. As discussed in Section 3.2, an
adequate tradeoff between the dimensionality and sampling
frequency of the collected data must be found, in order
to minimize the device resources affected, while ensuring
that enough samples are collected, thus avoiding biased
statistical models.

Upon the first installation, MPower records metadata
such as the device brand and model, CPU architecture and
kernel version. After that, MPower collects the following
categories of data through the Android APIs. Specifically,
MPower uses listeners and receivers to obtain new data only
when a change occurs. This ensures that no machine cycles
are wasted in this phase:

Battery. This includes the charging status, charge per-
centage, battery temperature, voltage and health. This
information is essential to model the battery behavior.

Mobile network. The power consumption of a data con-
nection is strongly influenced by two factors: the

Fig. 1 MPower Android
application user interface: a is a
screenshot of the application
main screen, and b is an
example notification, which
suggests to the user that the
Bluetooth system should be
disable because unused
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Fig. 2 MPower statistics about devices that have currently installed MPower and are transmitted the collected data. Those statistics are taken
from the official Google Play page

type of network used and the amount of data trans-
ferred. Therefore, MPower collects data about net-
work type (e.g, GPRS, EDGE, UMTS), byes sent
and received, interface condition (e.g., idle, connected,
authenticating) and link speed. MPower collects also
the call state and whether the airplane mode is active
or not.

Wi-Fi network. Similarly to the previous category, we log
the interface state, connection state, link speed and trans-
mitted bytes.

Screen. The display is one of the most battery-demanding
components. MPower logs whether or not the screen
backlight is on, the brightness mode (automatic or man-
ual) and value, as well as the screen refresh rate and
size.

GPS data includes only whether or not the GPS is enabled
and its current status (idle, connecting, transferring),
which is a good approximation of the utilization. For
privacy reasons we store no information about the user
position.

Bluetooth. Similarly to GPS, MPower logs only whether
or not the Bluetooth antenna is enabled, along with its
internal status (idle, transmitting).

Audio interface data is also recorded. This includes the
state of the microphone and speaker.

CPU power consumption is strongly influenced by its
frequency. MPower collects data about the current fre-
quency, along with minimum and maximum frequencies
allowed, in conjunction with the governor policy in use.
In case of multicore CPUs, MPower collects data about
all the cores in use.

MPower ignores data regarding accelerometers, magne-
tometers and similar sensors, because these components are
always active; therefore, it is not possible to act on them to

optimize the battery life. In other words, we consider them
as part of the battery’s natural discharge curve.

3.2 Logging, storing and sending data

MPower logs and stores data by leveraging the Andorid
background services. As mentioned above, the sampling
interval is crucial. On the one hand, a small sampling period
may seem to lead to more accurate models. On the other
hand, two aspects must be considered: first, the device’s
dynamic can be slower than the chosen period; secondly,
an excessively small period would in turn never trigger the
sleep mode when necessary because of the high CPU load
require by such a fast sampling frequency. This would ulti-
mately result in high power leaks caused by MPower itself.
According to our tests executed on different devices, and
described in [3], revealed that a good tradeoff between data
precision and the amount of power consumed by the col-
lecting phase is around 10 s. In practice, we decreased the
sampling rate until the MPower service permanently disap-
peared from the list of applications that contribute to more
than the 2 % of the overall power consumption. This led
us to finding a sampling period of 5 s, on the devices on
our possession. Actually, we set a conservative value of
10 s.

The data listed in Section 3.1 is stored in four
subsequent files per day (morning, afternoon, evening,
night). Every 10 s, MPower appends a timestamped line
to the current file. To guarantee privacy, each file is
encrypted with AES, zipped, and sent to the server, which
unzip it and store the contained records into a database
for subsequent asynchronous processing. This happens
automatically whenever Internet connectivity is available
through a Wi-Fi network, or on demand (even via cellu-
lar data network). The symmetric key is exchanged dur-
ing the authentication phase, which is performed through
Google OAuth.
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4 Power model generation

Our goal is to generate an accurate, device-centric power
model. Previous work [4] either dealt with data collected
in a controlled environment, thus creating non-adaptive,
device-centric models, or with real data, thus creating user-
centric power models [12–14]. MPower is profoundly dif-
ferent: It aims at creating a device-centric power model that
still consider the dynamics typical of a mobile scenario,
according to real-world data. To this end, we use the data
collected as described in Section 3.

The remainder of this section describes the methodol-
ogy we used to implement our power-model generation
procedure on the server side, along with the results of the
experimental evaluation.

4.1 Proposed methodology

The problem of power consumption estimation can be
defined as follows: given an unknown discharge process P
and an input-output sequence Z = {(x(t), y(t))}Nt=1, with
x(t) ∈ R

m and y(t) ∈ {0, . . . , 100}, realization of P ,
we want to find a function f able to predict the battery
level y(t), output of the process P , given the past input
x(0, . . . , t−1) and output y(0, . . . , t−1), or, more formally,
to find:

ŷ(t) = f [y(0, . . . , t − 1), x(0, . . . , t)]
where y(0, . . . , t −1) is the battery level in the time interval
{0, . . . , t −1} and x(0, . . . , t) is the input history in the time
interval {0, . . . , t}. This is summarized in Fig. 3.

4.1.1 Model estimation approach

The prediction problem is addressed with multiple tech-
niques in the literature, like in the time series prediction

Fig. 3 Block diagram that describes the input-output relationships in
our power model

[10] or the system identification fields [17]. In our case,
we will perform an approximation of the original process
P through an ARX, i.e., a linear autoregressive model with
exogenous input (see [17] for details). In these kind of mod-
els, we define the one step ahead prediction function as a
linear operator of the output past output y and inputs x:

ŷ(t)=θ[y(t −ka −na, . . . , t −ka −1), x(t −kb −nb, . . . , t −kb)]T

where θ ∈ R
na+(nb+1)m is a parameter vector, ka and kb

are the time delays and na and nb the orders of the autore-
gressive and of the exogenous part, respectively. Non-linear
behavior of the process P is addressed in Section 4.1.2. As
summarized in Section 2.2, battery-life prediction is gen-
erally addressed in the literature by using linear regression
models [18], i.e.:

ŷ(t) = θ x(t)T =
m∑

i=1

θixi(t),

mainly because that this specific model requires a lim-
ited computation for prediction. In fact, once the model is
trained, the battery level prediction requires a linear number
of operation in the parameter vector dimension (e.g, O(m)),
but it does not take temporal dependencies into account. In
this work, we want to take into account also models that
incorporate such dependencies. Therefore, for the model
selection we will perform an exploration of the ARX models
with different orders and time delays. The model selection
phase will be conducted by basing on the Akaike Informa-
tion Criterion (AIC), which balances the likelihood and the
complexity of the model, which is defined as:

AIC = log L − 2 ln(p),

where p is the number of free parameter of the model, i.e.,
p = na + (m + 1)nb, and L is the likelihood function of the
estimated levels w.r.t the real one.

4.1.2 Nonlinearity management

It is quite clear that the linear choice in modeling may intro-
duce a model bias in the estimation procedure, since we are
not constraining the process P generating data to be linear.
We addressed this problem using two different techniques.
First, we discriminate between:

• the controllable variables c = (c1, . . . , cs);
• the uncontrollable variables u = (u1, . . . , ur )

where x(t) = [c(t), u(t)]. This allow us to estimate a set of
models θ̄c� by fixing the configuration c� = (c�

1, . . . , c�
s ),

where each one is approximating a subset of the device
power discharge dynamics, leading to a better modeling
of the process. Examples of configurations are listed in
Table 1. Batches of data with continuous fixed configura-
tion Zc� are then extracted: the estimation of each parameter
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will be conducted on these dataset. The splitting of the data
with respect to the configurations would have no impact on
a controlled experimental setting. However, in our approach,
we must proceed with care, because it may result that some
configurations are far less frequent than others, thus affect-
ing the goodness of the model estimation. We address this
as described in Section 4.1.4.

Second, we transform the uncontrollable variables into a
feature space through a set of function φi(xi, t) : R ∈ R

q ,
which includes the possibility to exploit higher dimensional
spaces to maintain a linear estimation model while keeping a
low model bias. For instance, a possible feature space choice
we considered was s.t. φi(xi, t) = ∑

t∈S xi(t), where S is
the time interval in which a 1 % of the battery power was
lost.

4.1.3 Model construction and feature selection

Despite the aforementioned problems deriving from use of
linear models, their use will allow us to perform statistical
comparison among learned power models. Furthermore, the
knowledge of the parameter distribution allows us to apply
a statistical feature-selection method. In fact, if we learn a
sequence of power models parameters � = (θ1, . . . , θL) by
using non overlapping batches of data Z1, . . . , ZL (of equal
length N) for training, we are assured by the system iden-
tification theory [17] that they are asymptotically Gaussian
distributed. If we consider a set of parameter vectors �, by
computing:

θ̄ =
L∑

l=1

θl,

we will have a correct estimate of the optimal parameter
in the approximating parameter space θo, w.r.t. the empir-
ical risk (for details see [17]), and as a byproduct also an
estimate S2 of the real covariance matrix �2 of the distri-
bution. Then, we will be able to characterize the topology
of the parameter space: this will allow us to perform statis-
tical hypothesis tests for the significance of each parameter
vector components [18]. In this phase we can exploit the
known distribution of the parameters, to perform a feature
selection on the exogenous variables. In fact, by analyz-
ing the i-th component of the parameter vector θ̄i , we have
θ̄i−θo

i

sii
∼ N (0, 1), we may test for:

H0 : θi = 0 vs. H1 : θi �= 0

where σii = √{S2}ii . By basing on the critic region at sig-
nificance level α, Rα = {|t| > Z1−α/2}, where the test
statistics is t = θi√

Nsii
and Zα/2 is the quantile of order α/2,

we can check for significance of each of the parameter we
computed, and, consequently, the ability of each of the vari-
ables u we considered to predict the battery level y. Since

we performed multiple test on different parameter vectors
components, we will use the Bonferroni correction [18] to
achieve an aggregate significance level.

As final recap, for the power model prediction we use
internal configuration to select the specific device state c
and each of them induce a model parameter θ̄c where the
external conditions are used as exogenous input.

4.1.4 Device comparison

Relying again on the statistical properties of the param-
eter vectors θ̄ , we are able to compare two devices on
common configurations. Considering estimated parameter
vectors coming from data gahtered from different devices
(by fixing the same configuration) θ̄ (i), θ̄ (i), it is possible to
design a statistical test:

H0 : θ̄i = θ̄j vs. H1 : θ̄i �= θ̄j

by basing on the critic region at significance level α,

Li(LjLi − Lj − p + 1)

(Lj + 1)(Lj − 1)p

(
θ̄ (i) − θ̄ (j)

)T

S−1
(
θ̄ (i) − θ̄ (j)

)

≤ Fp,LiLj −Li−p+1,α

where Li and Lj are the number of parameter vectors used
to estimate respectively θ̄ (i) and θ̄ (j) and Fp,LiLj −Li−p+1,α

is the quantile of order 1 − α of the Fisher’s distribution
(under the assumption that they share the covariance matrix,
i.e., �i = �j ). Either the test rejects H0 or not we may infer
important information:

• in the case the two devices are considerably differ-
ent, we justify the estimation of the model for each
particular device;

• if they are proven to be similar, we may built up a joint
model, covering a set of configurations wider or equal
to the two original one, which can be used for bot the
devices.

This last consideration will allow our system to send a pre-
liminary model to the device, in the case a similar one was
already present in the database with a reliable model, and to
refine it as soon as new data are recorded on the device.

4.2 Experimental evaluation

We considered data from 5 randomly chosen devices among
those with at least 1 year of recorded data. We divided a
dataset that represent a single device into its different con-
figurations, as described in Section 4.1 (see also Table 1).
For each configuration, we created a training set and a
testing set.

Our preliminary analysis provided evidence that extract-
ing models from N = 100 samples, corresponding to
roughly 15 minutes of consecutive data, allows to be robust
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Table 1 Configuration parameters: values and considered configurations

Parameter Range c1 c2 c3 c4 c5 c6 c7 c8 c9

Airplane Mode ✓/✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Mobile Data State ✓/✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

WiFi ✓/✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓

Screen ✓/✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓

Bluetooth ✓/✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Brightness Level 0–100 % 0 % 0 % 0 % 66 % 0 % 0 % 66 % 0 % 0 %

with respect to noise (model modification is only 10 % even
increasing data to N = 400), and to meet the Gaussian
assumption.

Working with real-world data, rather than on data pro-
duced in a lab environments like previous work did, entails
some difficulties. The most concrete problem is that we do
not have a full discharge curve of a device in a fixed con-
figuration: Likely, a user changes the phone configuration
(see Table 1) during the day, and the battery discharge level
y is influenced by such changes. Consequently, instead of
using y, we compute d, which is the battery discharge level
at time t, as:

d(t) = y(t) − y(t − 1).

Therefore, our model becomes:

d(t) = θ d(t − 1)

where the order is selected according to the AIC index
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Fig. 4 Prediction of y, obtained from d as explained in Section 4.2.
Note that, for easing the visual comparison between estimated and
actual values, we rounded the prediction to an integer. According to
our collected data, estimating the discharge rate as linear function is a
viable option. Indeed, the mean error of our prediction is only 2 %

computed on our data as stated in Section 4.1. According to
AIC, an AR(1) model is the best trade-off between precision
and complexity.

Using this model, we estimated θ̄ as the average over dif-
ferent, equally-sized batches. By comparing our estimation
with the measured data in the testing set, we obtained only
a mean error of 2 % per hour. This experiment shows that
the model is able to estimate the discharge dynamic with
good precision, and, most importantly, leveraging a simple
and “readable” model.

Figure 4 shows the prediction capabilities on y, obtained
by reversing the aforementioned functional relationship
between y and d. More precisely, we obtained this model
from configuration c1 (as of Table 1) on a temporal interval
of 5 h.

In summary, we can conclude that, according to our col-
lected data, estimating the discharge rate as linear function
is a viable option.

Although these results are preliminary and obtained form
a single device for validating our intuition, we believe that
the generality and flexibility of our methodology easily
allows for extending this work.

5 Conclusion

Despite the great complexity and technological, hardware
and software advances in mobile devices development,
smart applications are still bounded by their limited energy
capacity. Therefore, battery is the most precious resource
for mobile devices. As a consequence, there is an active
research community focusing on how to design, develop
and, most importantly, evaluate energy-aware software.

We believe that systems able to accurately characterize
the power consumption on mobile devices are an important
prerequisite in this research area. In this work we presented
MPower, an adaptive power modeling system for Android,
intended as fundamental component for energy-aware appli-
cations and research. The key difference of our approach
consist in using a client-side power sensing component
(i.e., the MPower Android application) to collect power-
consumption data from real-world users and devices (i.e.,
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278 mobile devices, totaling about 22.5 millions of records
collected in about 1 year of measurement).

Previous work either focused on data collected in a
controlled environment, thus creating non-adaptive, device-
centric models, or with real data, thus creating user-centric
power models. Our approach allows us to build device-
centric power models, which take into account the various
hardware components, and how they contributed to the
overall power consumption. In this, MPower is profoundly
different from previous work. Indeed, we were able to create
a device-centric power model that still consider the dynam-
ics typical of a mobile scenario, according to real-world
data.

In our vision, our approach will provide the users with
tailored power models, toward better power-management
strategies, or green security applications (for instance). In
addition, our sensing and modeling technique is helpful to
other researchers because it supports the empirical evalua-
tion of energy-aware applications.
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