
“Just-in-Time” Training of Anomaly Detectors
(With Scarce Data)

Addressing Training Issues In Modern Intrusion Detection

Federico Maggi

Politecnico di Milano, PhD Candidate

UC Santa Barbara, Visiting Research Scholar (2008-2009).

January 21, 2010 — compsys seminar, VU, Amsterdam

How to distinguish between “good” and “bad” changes of a web
application?

Intrusion Detection
Detect attempts to compromise a system.

I What do we mean with “system”?
I A host,
I a network,

I Modern intrusion detection deals with a great diversity of
systems with really loose boundaries.
The system could be:

I an application (e.g., a web application),
I a service —how do you define its boundaries?
I all 2.0 bells and whistles.

Intrusion Detection
Detect attempts to compromise a system.

I What do we mean with “system”?

I A host,
I a network,

I Modern intrusion detection deals with a great diversity of
systems with really loose boundaries.
The system could be:

I an application (e.g., a web application),
I a service —how do you define its boundaries?
I all 2.0 bells and whistles.

Intrusion Detection
Detect attempts to compromise a system.

I What do we mean with “system”?
I A host,
I a network,

I Modern intrusion detection deals with a great diversity of
systems with really loose boundaries.
The system could be:

I an application (e.g., a web application),
I a service —how do you define its boundaries?
I all 2.0 bells and whistles.

Intrusion Detection
Detect attempts to compromise a system.

I What do we mean with “system”?
I A host,
I a network,

I Modern intrusion detection deals with a great diversity of
systems with really loose boundaries.

The system could be:
I an application (e.g., a web application),
I a service —how do you define its boundaries?
I all 2.0 bells and whistles.

Intrusion Detection
Detect attempts to compromise a system.

I What do we mean with “system”?
I A host,
I a network,

I Modern intrusion detection deals with a great diversity of
systems with really loose boundaries.
The system could be:

I an application (e.g., a web application),

I a service —how do you define its boundaries?
I all 2.0 bells and whistles.

Intrusion Detection
Detect attempts to compromise a system.

I What do we mean with “system”?
I A host,
I a network,

I Modern intrusion detection deals with a great diversity of
systems with really loose boundaries.
The system could be:

I an application (e.g., a web application),
I a service —how do you define its boundaries?
I all 2.0 bells and whistles.

Let’s focus on attacks against web applications
Target: a website. Entry point: a vulnerable web application.

Let’s focus on attacks against web applications
This is how HTTP is supposed to work. Straightforward.

Dynamic
web page

Client

HTTP Request

GET /login

HTTP Response

<h1>Login</h1>

Let’s focus on attacks against web applications
This is how a bad guy takes advantage of a vulnerable site to steal data from the server.

Dynamic
web page

Bad guy

Malicious HTTP Request

GET /login/id/a' or 't'='t

Interesting HTTP Response

<h1>...user1,pass1,...</h1>

Let’s focus on attacks against web applications
This is how a smart bad guy turns a page into an indirect “malware spreader”.

Dynamic
web pageBad guy

Malicious HTTP Request
GET /login/id/<script>..</script>

Bad guy's
page

Let’s focus on attacks against web applications
This is how a smart bad guy turns a page into an indirect “malware spreader”.

Dynamic
web pageBad guy

Malicious HTTP Request
GET /login/id/<script>..</script>

Malicious HTTP Response
<script>iInfectPCs();</script>

HTTP Redirect
www.iSpreadMalware.org Bad guy's

page
Unlucky

Client

Let’s focus on attacks against web applications
This is how a smart bad guy turns a page into an indirect “malware spreader”.

Dynamic
web pageBad guy

Malicious HTTP Request
GET /login/id/<script>..</script>

Malicious HTTP Response
<script>iInfectPCs();</script>

HTTP Redirect
www.iSpreadMalware.org Bad guy's

page
Unlucky

Client
Malicious HTTP Response

/* Attack 3rd party plugin */

I And now the unlucky client joins all the other hosts in the
botnet like a vampire joins his/her new friends.

I What if someone deploys a vulnerable, popular Facebook
application? :)

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32

/comment/<par1>/<par1-val>

/login/<par1>/<par1-val>/<par2>/<par2-val>

...

/<component1>/<par1>/<par1-val>/<par2>/<par2-val>

/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32

/comment/<par1>/<par1-val>

/login/<par1>/<par1-val>/<par2>/<par2-val>

...

/<component1>/<par1>/<par1-val>/<par2>/<par2-val>

/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32

/comment/<par1>/<par1-val>

/login/<par1>/<par1-val>/<par2>/<par2-val>

...

/<component1>/<par1>/<par1-val>/<par2>/<par2-val>

/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32

/comment/<par1>/<par1-val>

/login/<par1>/<par1-val>/<par2>/<par2-val>

...

/<component1>/<par1>/<par1-val>/<par2>/<par2-val>

/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32

/comment/<par1>/<par1-val>

/login/<par1>/<par1-val>/<par2>/<par2-val>

...

/<component1>/<par1>/<par1-val>/<par2>/<par2-val>

/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32

/comment/<par1>/<par1-val>

/login/<par1>/<par1-val>/<par2>/<par2-val>

...

/<component1>/<par1>/<par1-val>/<par2>/<par2-val>

/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32

/comment/<par1>/<par1-val>

/login/<par1>/<par1-val>/<par2>/<par2-val>

...

/<component1>/<par1>/<par1-val>/<par2>/<par2-val>

/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32

/comment/<par1>/<par1-val>

/login/<par1>/<par1-val>/<par2>/<par2-val>

...

/<component1>/<par1>/<par1-val>/<par2>/<par2-val>

/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Modeling benign HTTP interactions

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

Models of good messages

M1 MnM2 M3

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

MnM1 M3M2

Example of models
— parameter string length
— numeric range
— probabilistic grammar of strings
— string character distribution

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

Models of good sessions

M1 MnM2 M3

C1

C3

C2
M1

C7 C1

C3
M2

C2
C10 C7

Mn

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

M1 MnM3M2

C1

C2

C3
M1

C7 C1

C3
M2

C2 C5
C10

C3

C7
Mn

C1

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

M1 MnM2 M3

C1

C2

C3
M1

C7 C1

C3
M2

C2 C5
C10

C3

C7
Mn

C1

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

Detection of bad messages

M1 MnM2 M3

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

Client

Webserver

Detection of bad sessions

C1

C2

C3
M1

C7 C1

C3
M2

C2 C5
C10

C3

C7
Mn

C1

What if the modeled features change?
Note that this is the common problem of anomaly detection, per sé

In practice, what if the protected website suddenly changes?

I site changes means changes in the good behavior,
I changes in the good behavior means obsolete training,
I obsolete training leads to FP.

What if the modeled features change?
Note that this is the common problem of anomaly detection, per sé

In practice, what if the protected website suddenly changes?

I site changes means changes in the good behavior,
I changes in the good behavior means obsolete training,
I obsolete training leads to FP.

What if the modeled features change?
Note that this is the common problem of anomaly detection, per sé

In practice, what if the protected website suddenly changes?
I site changes means changes in the good behavior,

I changes in the good behavior means obsolete training,
I obsolete training leads to FP.

What if the modeled features change?
Note that this is the common problem of anomaly detection, per sé

In practice, what if the protected website suddenly changes?
I site changes means changes in the good behavior,
I changes in the good behavior means obsolete training,

I obsolete training leads to FP.

What if the modeled features change?
Note that this is the common problem of anomaly detection, per sé

In practice, what if the protected website suddenly changes?
I site changes means changes in the good behavior,
I changes in the good behavior means obsolete training,
I obsolete training leads to FP.

What type of changes are we concerned about?
Those that affect normality models.

I Request: e.g., new parameters, new domains for parameters,
L10N, I18N.

I Example (I18N): 3/12/2009 3:00 PM GMT-08, 3 May 2009

3:00, now.
I Affect: string length, char distribution, string grammar.

I Response: e.g., new DOM nodes, rearrangement of DOM
nodes.

I Example (AJAX): several nodes are enriched with client-side
code.

I Affect: any tree-based DOM normality models.

I Session: e.g., reordering of paths in a typical session,
add/rem. of authentication.

I Example (auth):
/site → /auth → /blog

/site → /auth → /files

/site → /files|/blog|/auth.
I Affect: sequence-based session models.

What type of changes are we concerned about?
Those that affect normality models.

I Request: e.g., new parameters, new domains for parameters,
L10N, I18N.

I Example (I18N): 3/12/2009 3:00 PM GMT-08, 3 May 2009

3:00, now.
I Affect: string length, char distribution, string grammar.

I Response: e.g., new DOM nodes, rearrangement of DOM
nodes.

I Example (AJAX): several nodes are enriched with client-side
code.

I Affect: any tree-based DOM normality models.

I Session: e.g., reordering of paths in a typical session,
add/rem. of authentication.

I Example (auth):
/site → /auth → /blog

/site → /auth → /files

/site → /files|/blog|/auth.
I Affect: sequence-based session models.

What type of changes are we concerned about?
Those that affect normality models.

I Request: e.g., new parameters, new domains for parameters,
L10N, I18N.

I Example (I18N): 3/12/2009 3:00 PM GMT-08, 3 May 2009

3:00, now.
I Affect: string length, char distribution, string grammar.

I Response: e.g., new DOM nodes, rearrangement of DOM
nodes.

I Example (AJAX): several nodes are enriched with client-side
code.

I Affect: any tree-based DOM normality models.

I Session: e.g., reordering of paths in a typical session,
add/rem. of authentication.

I Example (auth):
/site → /auth → /blog

/site → /auth → /files

/site → /files|/blog|/auth.
I Affect: sequence-based session models.

What type of changes are we concerned about?
Those that affect normality models.

I Request: e.g., new parameters, new domains for parameters,
L10N, I18N.

I Example (I18N): 3/12/2009 3:00 PM GMT-08, 3 May 2009

3:00, now.
I Affect: string length, char distribution, string grammar.

I Response: e.g., new DOM nodes, rearrangement of DOM
nodes.

I Example (AJAX): several nodes are enriched with client-side
code.

I Affect: any tree-based DOM normality models.

I Session: e.g., reordering of paths in a typical session,
add/rem. of authentication.

I Example (auth):
/site → /auth → /blog

/site → /auth → /files

/site → /files|/blog|/auth.
I Affect: sequence-based session models.

Is this an issue?
Todays’ websites change pretty often.

Between Jan 29 and Apr 13, 2009, we crawled:

I 2,264 websites drawn from Alexa’s Top 500 and googling,

I 3,303,816 pages instances total,

I 1,390 snapshots for each website.

Is this an issue?
Todays’ websites change pretty often.

Between Jan 29 and Apr 13, 2009, we crawled:

I 2,264 websites drawn from Alexa’s Top 500 and googling,

I 3,303,816 pages instances total,

I 1,390 snapshots for each website.

What type of, and how many, changes have we found?

I YouTube (dramatic change)
I richer interaction to let user rearrange widgets,
I this meant lots of new parameters,
I lots of req/res/ses changes.

I Yahoo! Mail
I new parameter for enhaced and localized search,
I new valid values for parameters,
I not many response changes,

I MySpace
I unfortunately, we found this didn’t change too much.

I All:
I 40% have new resource paths,
I 30% have new parameters.

What type of, and how many, changes have we found?

I YouTube (dramatic change)
I richer interaction to let user rearrange widgets,
I this meant lots of new parameters,
I lots of req/res/ses changes.

I Yahoo! Mail
I new parameter for enhaced and localized search,
I new valid values for parameters,
I not many response changes,

I MySpace
I unfortunately, we found this didn’t change too much.

I All:
I 40% have new resource paths,
I 30% have new parameters.

What type of, and how many, changes have we found?

I YouTube (dramatic change)
I richer interaction to let user rearrange widgets,
I this meant lots of new parameters,
I lots of req/res/ses changes.

I Yahoo! Mail
I new parameter for enhaced and localized search,
I new valid values for parameters,
I not many response changes,

I MySpace
I unfortunately, we found this didn’t change too much.

I All:
I 40% have new resource paths,
I 30% have new parameters.

What type of, and how many, changes have we found?

I YouTube (dramatic change)
I richer interaction to let user rearrange widgets,
I this meant lots of new parameters,
I lots of req/res/ses changes.

I Yahoo! Mail
I new parameter for enhaced and localized search,
I new valid values for parameters,
I not many response changes,

I MySpace
I unfortunately, we found this didn’t change too much.

I All:
I 40% have new resource paths,
I 30% have new parameters.

What type of, and how many, changes have we found?

I YouTube (dramatic change)
I richer interaction to let user rearrange widgets,
I this meant lots of new parameters,
I lots of req/res/ses changes.

I Yahoo! Mail
I new parameter for enhaced and localized search,
I new valid values for parameters,
I not many response changes,

I MySpace
I unfortunately, we found this didn’t change too much.

I All:
I 40% have new resource paths,
I 30% have new parameters.

Is this really an issue?
Todays webapps’ code change pretty often.

Is this really an issue?
WordPress’ code. Only LOC that handle HTTP requests are shown.

 280000

 300000

 320000

 340000

 360000

 380000

 400000

 420000

 440000

 460000

 480000
01

/0
1/

03

01
/0

7/
03

01
/0

1/
04

01
/0

7/
04

01
/0

1/
05

01
/0

7/
05

01
/0

1/
06

01
/0

7/
06

01
/0

1/
07

01
/0

7/
07

01
/0

1/
08

01
/0

7/
08

01
/0

1/
09

01
/0

7/
09

Is this really an issue?
MovableType Open Source’s code. Only LOC that handle HTTP requests are shown.

 450000

 500000

 550000

 600000

 650000

 700000

 750000

 800000

 850000
01

/0
4/

06

01
/0

7/
06

01
/1

0/
06

01
/0

1/
07

01
/0

4/
07

01
/0

7/
07

01
/1

0/
07

01
/0

1/
08

01
/0

4/
08

01
/0

7/
08

01
/1

0/
08

01
/0

1/
09

01
/0

4/
09

Is this really an issue?
PhpBB’s code. Only LOC that handle HTTP requests are shown.

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 750000

 800000

 850000

 900000
01

/0
1/

03

01
/0

1/
04

01
/0

1/
05

01
/0

1/
06

01
/0

1/
07

01
/0

1/
08

01
/0

1/
09

01
/0

1/
10

Li
ne

s
of

 C
od

e

Effects on a web application anomaly detector?
We performed some tests using webanomaly

I Real-world training Q ′ and testing datasets Q, Q ∩ Q ′ = ∅:
I 823 unique web applications,
I 36,392 unique resource paths,
I 16,671 unique parameters,
I 58,734,624 HTTP messages;
I 1000 real-world attacks.

I We drifted Q, obtaining a known Qdrift

I 6,749 new session flows,
I 6,750 new parameters,
I 5,785 modified parameters.

In this way, the set of changes in web application behavior was
explicitly known.

Effects on a web application anomaly detector?
We performed some tests using webanomaly

I Real-world training Q ′ and testing datasets Q, Q ∩ Q ′ = ∅:
I 823 unique web applications,
I 36,392 unique resource paths,
I 16,671 unique parameters,
I 58,734,624 HTTP messages;
I 1000 real-world attacks.

I We drifted Q, obtaining a known Qdrift

I 6,749 new session flows,
I 6,750 new parameters,
I 5,785 modified parameters.

In this way, the set of changes in web application behavior was
explicitly known.

Effects on a web application anomaly detector?
We performed some tests using webanomaly

I Real-world training Q ′ and testing datasets Q, Q ∩ Q ′ = ∅:
I 823 unique web applications,
I 36,392 unique resource paths,
I 16,671 unique parameters,
I 58,734,624 HTTP messages;
I 1000 real-world attacks.

I We drifted Q, obtaining a known Qdrift

I 6,749 new session flows,
I 6,750 new parameters,
I 5,785 modified parameters.

In this way, the set of changes in web application behavior was
explicitly known.

Details on how we built Qdrift

I New session flows
/login /index

/index /login

/article /article

I new parameters

/nav?id=21&mode=text /nav?pk=21&attr=text

/all?filter=2009 /all?filter=2009&pag=true

/get?id=21 /retrieve?id=21

I modified parameters

?date=1944-10-14 ?date=yesterday&fmt=smart

Details on how we built Qdrift

I New session flows
/login /index

/index /login

/article /article

I new parameters

/nav?id=21&mode=text /nav?pk=21&attr=text

/all?filter=2009 /all?filter=2009&pag=true

/get?id=21 /retrieve?id=21

I modified parameters

?date=1944-10-14 ?date=yesterday&fmt=smart

Details on how we built Qdrift

I New session flows
/login /index

/index /login

/article /article

I new parameters

/nav?id=21&mode=text /nav?pk=21&attr=text

/all?filter=2009 /all?filter=2009&pag=true

/get?id=21 /retrieve?id=21

I modified parameters

?date=1944-10-14 ?date=yesterday&fmt=smart

Details on how we built Qdrift

I New session flows
/login /index

/index /login

/article /article

I new parameters

/nav?id=21&mode=text /nav?pk=21&attr=text

/all?filter=2009 /all?filter=2009&pag=true

/get?id=21 /retrieve?id=21

I modified parameters

?date=1944-10-14 ?date=yesterday&fmt=smart

Effects on detection

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

T
ru

e
po

si
tiv

e
ra

te

False positive rate

Detection accuracy (Q)
Detection accuracy (Qdrift)

Do we want to re-train our IDS every time?
Wait a minute. Is it always feasible?

I Normally:
I a new version of a webapp is deployed,
I the security staff has to check with the developers for relevant

changes,
I the security expert selectively re-trains the normality models.

I How about a full-retraining?
I OK, but where do you get clean training data if you just

deployed the app?
I isn’t it quite expensive?

I Wouldn’t it be great to have the IDS automatically figure out
relevant changes and update the models just-in-time?

Do we want to re-train our IDS every time?
Wait a minute. Is it always feasible?

I Normally:
I a new version of a webapp is deployed,
I the security staff has to check with the developers for relevant

changes,
I the security expert selectively re-trains the normality models.

I How about a full-retraining?
I OK, but where do you get clean training data if you just

deployed the app?
I isn’t it quite expensive?

I Wouldn’t it be great to have the IDS automatically figure out
relevant changes and update the models just-in-time?

Do we want to re-train our IDS every time?
Wait a minute. Is it always feasible?

I Normally:
I a new version of a webapp is deployed,
I the security staff has to check with the developers for relevant

changes,
I the security expert selectively re-trains the normality models.

I How about a full-retraining?
I OK, but where do you get clean training data if you just

deployed the app?
I isn’t it quite expensive?

I Wouldn’t it be great to have the IDS automatically figure out
relevant changes and update the models just-in-time?

Do we want to re-train our IDS every time?
Wait a minute. Is it always feasible?

I Normally:
I a new version of a webapp is deployed,
I the security staff has to check with the developers for relevant

changes,
I the security expert selectively re-trains the normality models.

I How about a full-retraining?
I OK, but where do you get clean training data if you just

deployed the app?
I isn’t it quite expensive?

I Wouldn’t it be great to have the IDS automatically figure out
relevant changes and update the models just-in-time?

HTTP responses contain good clues about changes!

I links → resources and parameters candidates,

I forms → resources candidates,

<form name="newform" target="/account/newhandler">

<!--fields-->

</form>

I fields → parameters and also new candidate values.

<input type="text" name="new_parameter" />

<select name="subject">

<option>General</option>

<option>User interface</option>

<option>Functionality</option>

<option>New value for ’subject’</option>

</select>

HTTP responses contain good clues about changes!
I links → resources and parameters candidates,

I forms → resources candidates,

<form name="newform" target="/account/newhandler">

<!--fields-->

</form>

I fields → parameters and also new candidate values.

<input type="text" name="new_parameter" />

<select name="subject">

<option>General</option>

<option>User interface</option>

<option>Functionality</option>

<option>New value for ’subject’</option>

</select>

HTTP responses contain good clues about changes!

I links → resources and parameters candidates,

I forms → resources candidates,

<form name="newform" target="/account/newhandler">

<!--fields-->

</form>

I fields → parameters and also new candidate values.

<input type="text" name="new_parameter" />

<select name="subject">

<option>General</option>

<option>User interface</option>

<option>Functionality</option>

<option>New value for ’subject’</option>

</select>

HTTP responses contain good clues about changes!

I links → resources and parameters candidates,

I forms → resources candidates,

<form name="newform" target="/account/newhandler">

<!--fields-->

</form>

I fields → parameters and also new candidate values.

<input type="text" name="new_parameter" />

<select name="subject">

<option>General</option>

<option>User interface</option>

<option>Functionality</option>

<option>New value for ’subject’</option>

</select>

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi

intercept the corresponding response respi
extract parmeters and values from links, forms, fields

at next request qi+1

compare parameter and values to spot legit changes

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi

intercept the corresponding response respi
extract parmeters and values from links, forms, fields

at next request qi+1

compare parameter and values to spot legit changes

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi

intercept the corresponding response respi
extract parmeters and values from links, forms, fields

at next request qi+1

compare parameter and values to spot legit changes

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi
intercept the corresponding response respi

extract parmeters and values from links, forms, fields

at next request qi+1

compare parameter and values to spot legit changes

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi
intercept the corresponding response respi
extract parmeters and values from links, forms, fields

at next request qi+1

compare parameter and values to spot legit changes

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi
intercept the corresponding response respi
extract parmeters and values from links, forms, fields

at next request qi+1

compare parameter and values to spot legit changes

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi
intercept the corresponding response respi
extract parmeters and values from links, forms, fields

at next request qi+1

compare parameter and values to spot legit changes

Example

qi = GET /page?id=14

respi =

<form name="newform" target="/account/

newhandler">

<input type="text" name="new_parameter" />

<select name="subject">

<option>General</option>

<option>User interface</option>

<option>Functionality</option>

<option>New value for ’subject’</option>

</select>

</form>

qi+1 = GET /account/newhandler?new_parameter=1

would rise a false positive.

Example

qi = GET /page?id=14

respi =

<form name="newform" target="/account/

newhandler">

<input type="text" name="new_parameter" />

<select name="subject">

<option>General</option>

<option>User interface</option>

<option>Functionality</option>

<option>New value for ’subject’</option>

</select>

</form>

qi+1 = GET /account/newhandler?new_parameter=1

would rise a false positive.

Example

qi = GET /page?id=14

respi =

<form name="newform" target="/account/

newhandler">

<input type="text" name="new_parameter" />

<select name="subject">

<option>General</option>

<option>User interface</option>

<option>Functionality</option>

<option>New value for ’subject’</option>

</select>

</form>

qi+1 = GET /account/newhandler?new_parameter=1

would rise a false positive.

How do we eliminate false positives?

I new parameters: we create a new model and we train it on
values, if any.

I new session flows: we just reorder the session sequence.

I new values: we can guess the type (e.g., string, token). If not
available, we trust the requests that follows.

How do we eliminate false positives?

I new parameters: we create a new model and we train it on
values, if any.

I new session flows: we just reorder the session sequence.

I new values: we can guess the type (e.g., string, token). If not
available, we trust the requests that follows.

How do we eliminate false positives?

I new parameters: we create a new model and we train it on
values, if any.

I new session flows: we just reorder the session sequence.

I new values: we can guess the type (e.g., string, token). If not
available, we trust the requests that follows.

Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%

New parameters 6,750 0 100.0%
Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Does it work?
Results on Qdrift

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

T
ru

e
po

si
tiv

e
ra

te

False positive rate

Detection accuracy (Q)
Detection accuracy (Qdrift)

Does it work?
Results on Qdrift

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

T
ru

e
po

si
tiv

e
ra

te

False positive rate

Detection accuracy (Q)
Detection accuracy (Qdrift)

Assumptions, limitations and risks

I Assumptions
I can detect those changes that can be “guessed” from the

responses

I Limitations
I modifications of existing parameters are only partially

detectable,
I JavaScript and rich client-side code is not analyzed, yet, but

we believe they contain lots of insights!

I Risks
I it trusts the application as an oracle,
I however, if somebody has already compromised it, we have

another problem :)
I right after a change occurs, the very first response is critical,
I if somebody manages to tamper with that, models are

poisoned

Assumptions, limitations and risks

I Assumptions
I can detect those changes that can be “guessed” from the

responses

I Limitations
I modifications of existing parameters are only partially

detectable,
I JavaScript and rich client-side code is not analyzed, yet, but

we believe they contain lots of insights!

I Risks
I it trusts the application as an oracle,
I however, if somebody has already compromised it, we have

another problem :)
I right after a change occurs, the very first response is critical,
I if somebody manages to tamper with that, models are

poisoned

Assumptions, limitations and risks

I Assumptions
I can detect those changes that can be “guessed” from the

responses

I Limitations
I modifications of existing parameters are only partially

detectable,
I JavaScript and rich client-side code is not analyzed, yet, but

we believe they contain lots of insights!

I Risks
I it trusts the application as an oracle,
I however, if somebody has already compromised it, we have

another problem :)
I right after a change occurs, the very first response is critical,
I if somebody manages to tamper with that, models are

poisoned

Assumptions, limitations and risks

I Assumptions
I can detect those changes that can be “guessed” from the

responses

I Limitations
I modifications of existing parameters are only partially

detectable,
I JavaScript and rich client-side code is not analyzed, yet, but

we believe they contain lots of insights!

I Risks
I it trusts the application as an oracle,
I however, if somebody has already compromised it, we have

another problem :)
I right after a change occurs, the very first response is critical,
I if somebody manages to tamper with that, models are

poisoned

Conclusions

I very simple and effective at reducing FP due to changes;
I balance between:

I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:

I risk mitigation: update a model only when a change in the
corresponding response is observed at least k times;

I client-side code inspection: todays’ JavaScript libraries perform
several task related to paramters and dynamic DOM
construction!

Conclusions

I very simple and effective at reducing FP due to changes;

I balance between:
I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:

I risk mitigation: update a model only when a change in the
corresponding response is observed at least k times;

I client-side code inspection: todays’ JavaScript libraries perform
several task related to paramters and dynamic DOM
construction!

Conclusions

I very simple and effective at reducing FP due to changes;
I balance between:

I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:

I risk mitigation: update a model only when a change in the
corresponding response is observed at least k times;

I client-side code inspection: todays’ JavaScript libraries perform
several task related to paramters and dynamic DOM
construction!

Conclusions

I very simple and effective at reducing FP due to changes;
I balance between:

I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:

I risk mitigation: update a model only when a change in the
corresponding response is observed at least k times;

I client-side code inspection: todays’ JavaScript libraries perform
several task related to paramters and dynamic DOM
construction!

Conclusions

I very simple and effective at reducing FP due to changes;
I balance between:

I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:
I risk mitigation: update a model only when a change in the

corresponding response is observed at least k times;

I client-side code inspection: todays’ JavaScript libraries perform
several task related to paramters and dynamic DOM
construction!

Conclusions

I very simple and effective at reducing FP due to changes;
I balance between:

I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:
I risk mitigation: update a model only when a change in the

corresponding response is observed at least k times;
I client-side code inspection: todays’ JavaScript libraries perform

several task related to paramters and dynamic DOM
construction!

Thanks! Questions?
Those interested in the omitted, “with scarce data”-part of the

talk may come to NDSS 2010, San Diego.

